
Programming Models
Summary

William Gropp
www.mcs.anl.gov/~gropp

Argonne National
Laboratory Summary

Effect of code transformations for uni-
processor performance

Factor
of 7

Argonne National
Laboratory Summary

What Have We Done Well?
 Recognition of the importance of

– Locality for performance
– Portability
– Latency hiding
– Aiding the programmer with data decomposition/distribution
– Reuse of Legacy code fragments

Argonne National
Laboratory Summary

Avoiding complex memory
consistency models for the
programmers– Adopting successful advances in programming models (like OO)
 Realistic global coherence model (as in, not)
 Some recognition of the problem of “brittleness”
 Some discussion of adoption strategy
 Exploring different solutions to these problems

Argonne National
Laboratory Summary

What Are We Missing?
Role of hardware

– Tension between portability and performance
advantages

Need for multiple implementations of each language
Time to develop a language

– Are we too optimistic?
What are the application classes?

– We use multiple languages now
Who is the audience?

– Experts? Which Experts?
– The masses?

Argonne National
Laboratory Summary

What Are We Missing (2)?
 Intelligence and Creativity of the compiler

– Are we expecting too much from the compiler?
– Scalability (given problems with OpenMP, what is different)? Complexity

of collective algorithms (will your compiler publish papers?)
– Recalling the HPF experience,

• What features are straightforward?
• What features are difficult (may involve tradeoffs wrt performance)?
• What features are good ideas that require research?
• How do features interact with each other, particularly WRT

performance?
 Is the real productivity problem complex software?
 Stability

– Languages that rely on a rich set of methods are very risky (for users)
because the methods are not viewed as immutable (TK, Java)

 Planning for the future
– Will these languages be relevant when they have time to mature?
– Heterogeneity

Argonne National
Laboratory Summary

What Are We Really Missing?
 I/O!
 Ease of writing incorrect codes; detectibility of errors (e.g., avoiding

races)
– E.g., does deleting a token such as “atomic” introduce a race?

Would it be better to have a “nonatomic” token?
 Fault handling (defined behavior on errors, detection, repair, …)
 Alternate (non-text-only) description formats?

