
The perspective from

PDE-constrained optimization:

Fast algorithms and their potential for

quantifying uncertainty in inverse problems

Omar Ghattas
Joint work with: Volkan Akçelik, George Biros, Pearl Flath,

Judy Hill, Bart van Bloemen Waanders, Lucas Wilcox

Sandia CSRI/NSF/AFOSR Workshop on Large Scale
Inverse Problems and Quantification of Uncertainty

Santa Fe, NM, September 10–12, 2007



Some background on this workshop

I Fourth in a series of Santa Fe workshops (2001, 2004,
2005, 2007)

I First three workshops focused on deterministic
optimization, in particular for large-scale problems
governed by PDEs

I This workshop shifts the focus to estimation of
uncertainty in the solution of large scale inverse problems

I Brings together and merges the perspectives of several
different viewpoints (frequentist, Bayesian, Kalman,
optimization, ...)

I Begin with tutorial presentations on Day 1 to help
cross-fertilize ideas

I We will attempt to capture these perspectives in a
post-workshop published volume



Goals of this particular tutorial

I Review a family of contemporary, powerful methods for
optimization of systems governed by PDEs

I Argue that the structure of many PDE optimization
problems (in particular for ill-posed inverse problems)
permits:

I very fast solution of the optimization problem
I cheap and accurate approximation of the Hessian

where “fast” and “cheap” mean: in a constant number of
forward solves, independent of mesh size

I Illustrate the role of fast algorithms for PDE optimization
in estimation of uncertainty in the linear Gaussian case

I Pose the question of how such structure-exploiting
techniques can be brought to bear on
nonlinear/non-Gaussian inverse problems



Fast algorithms: Caveats

I Presentation generally follows V. Akcelik, G. Biros,
O. Ghattas, J. Hill, D. Keyes, and
B. van Bloemen Waanders, Parallel algorithms for
PDE-constrained optimization, in Frontiers of Parallel
Computing, M. Heroux, P. Raghaven, and H. Simon, eds,
SIAM, 2006.

I Will focus on a class of Newton-like methods that exploit
forward sovlers (will not mention multigrid and domain
decomposition methods for optimization problems)

I Focus on local convergence (will not mention
globalization techniques)

I Will consider only equality-constrained optimization (no
mention of inequalities)

I Algorithms stated in finite-dimensional form



General form of a (discretized) PDE-constrained

optimization problem

min
u,d

J(u,d)

subject to c(u,d) = 0

h(u,d) ≥ 0

where:

I u: state variables

I d: optimization variables (inversion, control, or design)

I J: objective function

I c: residual of state equations

I h: the residual of parameter or state inequality constraints



Example: Optimal flow control: Distributed control

for steady-state Burgers equation

min
u,d

J(u,d)
def
=

1

2

∫
Ω

∇u · ∇u dx+
ρ

2

∫
Ω

d · d dx

subject to − ν∆u+ (∇u)u = d in Ω

u = g on ∂Ω

where:
I u(x): velocity field (state variable)
I d(x): distributed source (control variable)
I g(s): boundary source (known function)
I ν: fluid viscosity (known parameter)
I Ω: domain
I ∂Ω: boundary
I ρ: cost of the controls (known parameter)



Example: Optimal flow control: Optimality

conditions

Form Lagrangian, where λ is an adjoint varible:

L(u,λ,d)
def
= J(u,d)+

∫
Ω

[ν∇u · ∇λ+ λ · (∇u)u− d · λ] dx

Stationarity of Lagrangian w.r.t. λ, u, and d yields first order
optimality system:

−ν∆u+ (∇u)u = d in Ω state eqn

u = g on ∂Ω

−ν∆λ+ (∇u)Tλ− (∇λ)u− λ divu = ∆u in Ω adjoint eqn

λ = 0 on ∂Ω

ρd+ λ = 0 in Ω control eqn



PDE-constrained optimization, discrete form

min
u,d

J(u,d)

subject to c(u,d) = 0

Form Lagrangian:

L(u,d,λ)
def
= J(u,d) + λTc(u,d)

where

I u ∈ Rn: state variables

I λ ∈ Rn: adjoint variables

I d ∈ Rm: optimization variables

I J ∈ R: objective function

I c ∈ Rn: state equations



PDE-constrained optimization, discrete form

Stationarity of Lagrangian w.r.t. u, λ, and d yields first order
optimality conditions:

∂uL
∂dL
∂λL

 =


gu + JTuλ
gd + JTdλ

c

 = 0

where:

I gu ∈ Rn: gradient of J w.r.t. u

I gd ∈ Rm: gradient of J w.r.t. d

I Ju ∈ Rn×n: Jacobian of c w.r.t. u

I Jd ∈ Rn×m: Jacobian of c w.r.t. d



Newton solver framework

Newton step on the optimality conditions yields KKT system: Wuu Wud JTu
Wdu Wdd JTd
Ju Jd 0


pu
pd
λ+

 = −


gu
gd
c


where:

I W ∈ R(n+m)×(n+m): Hessian matrix of the Lagrangian
function, partitioned into u and d blocks

I pu ∈ Rn: Newton direction in u variables

I pd ∈ Rm: Newton direction in d variables

I λ+ ∈ Rn: updated adjoint variable

Convergence rate is locally quadratic (often mesh-independent)



Solution of the KKT system: Computational issues

I KKT matrix is of dimension (2n+m)× (2n+m)

I n is mesh-dependent, m often mesh dependent

I factorization of KKT matrix not an option for 3D
problems

I iterative solvers fail unless structure of KKT matrix
exploited

I “inverting” Ju is a kernel step in a Newton-based PDE
solver; therefore desirable to capitalize on PDE solvers
and libraries

I will focus on several related methods that exploit the
connection with PDE solvers



Solution of the KKT system: Newton-like methods

that bootstrap forward PDE solvers

I Reduced space methods
I Reduced Newton (RN): linearize then block eliminate
I Reduced Newton-CG (RNCG): linearize then block

eliminate then iterate
I Reduced Quasi-Newton (RQN): linearize then block

eliminate then approximate
I Nonlinear Reduced Newton (NRN): block eliminate then

linearize

I Full space methods
I Lagrange-Newton-Krylov-Schwarz (LNKS): linearize,

then iterate, then (approximately) block eliminate



Reduced Newton (RN)
Elimination of pu from (linearized) state equation, then λ+

from adjoint equation, yields reduced space optimization
equation to be solved for pd at each Newton iteration:

Wzpd = −gd − JTd J
−T
u gu + WT

yzJ
−1
u c optimization step

Jupu = −Jdpd − c state step

JTuλ+ = − (gu + Wuupu + Wudpd) adjoint step

where:

I Wyz
def
= Wud −WuuJ

−1
u Jd is the cross-Hessian

I Wz
def
= JTd J

−T
u WuuJ

−1
u Jd−JTd J

−T
u Wud−WduJ

−1
u Jd+Wdd

is the reduced Hessian (i.e. the Schur complement of the
state and adjoint blocks)

Construction of J−1
u Jd term within Wz requires m solves of

the linearized state equations; becomes intractable for large m.



Reduced Gauss Newton Conjugate Gradients

(RGNCG)

I Discard off-diagonal Hessian blocks JTd J
−T
u Wud and

WduJ
−1
u Jd

I Gauss Newton reduced Hessian then becomes
WGN

z
def
= JTd J

−T
u WuuJ

−1
u Jd + Wdd

I Solve reduced Newton equation by conjugate gradients

I Form on-the-fly matrix–vector products with WGN
z ; just

one pair of forward/adjoint (linearized) PDE solves
required at each CG iteration

I Terminate CG iterations early to prevent oversolving

I For many ill-posed inverse problems, reduced Hessian has
(or can be preconditioned to have) “compact + identity”
structure; results in mesh-independent convergence of CG
iterations



Reduced Gauss Newton Conjugate Gradients

(RGNCG)

At each Newton iteration:

Wzpd = −gd − JTd J
−T
u gu optimization step

Jupu = −Jdpd − c state step

JTuλ+ = −gu adjoint step

I Just one pair of forward/adjoint (linearized) PDE solves
required at each CG iteration

I Convergence of Newton iterations is linear; depends on
spectral radius of (WGN

z )−1(JTd J
−T
u Wud + WduJ

−1
u Jd)

I For least squares inverse problems, convergence can be
very fast since Wud and Wdu are often small



Reduced Limited Memory Quasi Newton (RLMQN)

I Form limited-memory quasi-Newton approximation (Bz)
of reduced Hessian

I Drop all other Hessian terms

I Convergence rate reduces to linear

I But only one pair of forward/adjoint (linearized) PDE
solves required at each (quasi-) Newton iteration:

Bzpd = −gd − JTd J
−T
u gu optimization step

Jupu = −Jdpd − c state step

JTuλ+ = −gu adjoint step

I Limiting case equivalent to nonlinear conjugate gradients



Nonlinear Reduced Newton (NLRN)

Nonlinear elimination of state and adjoint variables: can be
thought of as solving the unconstrained optimization problem

min
d

J(u(d),d)

I At each Newton iteration,
I solve (nonlinear) state equation c(u,d) = 0
I solve adjoint equation JTuλ = −gu
I then solve optimization equation Wzpd = −gd − JTd λ

I Conjugate gradient and limited memory quasi-Newton
variants are possible

I Advantage for time-dependent PDE-constrained
optimization problems: state and adjoint histories need
not be carried along at each Newton iteration

I But full nonlinear solution of state equations required



Example: Inverse acoustic wave propagation
PDE-constrained optimization problem:

min
1
2

Nr∑
j=1

∫ T

0

∫
Ω

(u∗ − u)2 δ(x− xj) dx dt+ ρ

∫
Ω
(∇d · ∇d+ ε)

1
2dx dt

subject to ü−∇ · d∇u = f in Ω× (0, T )
d∇u · n = 0 on Γ× (0, T )
u = u̇ = 0 in Ω× {t = 0}

where:

I u∗(x, t): observed pressure

I u(x, t): predicted pressure

I f(x, t): acoustic energy source (assume single source)

I xj: locations of Nr receivers

I d(x): squared acoustic velocity distribution

I observation window: t = (0, T )



Example: Inverse acoustic wave propagation
Optimality conditions:
State equation:

ü−∇ · d∇u = f in Ω× (0, T )
d∇u · n = 0 on Γ× (0, T )
u = u̇ = 0 for Ω× {t = 0}

Adjoint equation:

λ̈−∇ · d∇λ+
Nr∑
i=1

(u∗ − u) δ(x− xj) = 0 in Ω× (0, T )

d∇λ · n = 0 on Γ× (0, T )

λ = λ̇ = 0 for Ω× {t = T}
Parameter equation:∫ T

0
∇u · ∇λ dt− β∇ · (|∇d|−1

ε ∇d) = 0 in Ω

∇d · n = 0 on dΓ



Example: Inverse acoustic wave propagation
Reconstruction of hemipelvic bony geometry:



Example: Inverse acoustic wave propagation
Parallel scalability (strong) for 262,144 grid point problem:

procs grid pts/proc time (s) time/gridpts/proc efficiency
16 16,384 6756 0.41 1.00
32 8192 3549 0.43 0.95
64 4096 1933 0.47 0.87
128 2048 1011 0.49 0.84

Algorithmic scalability:

material grid nonlinear iter total linear iter avg linear iter
125 17 144 8.5
729 12 249 21.0

4,913 12 396 33.0
35,937 25 439 17.6

274,625 19 370 19.5
2,146,689 22 436 19.8



Optimal boundary control of Navier-Stokes flow
PDE-constrained optimization problem:

min
u,p,d

J(u, p,d)
def
=
ν

2

∫
Ω

∇u · ∇u dx+
ρ

2

∫
∂Ωd

|d|2 ds

subject to − ν∆u+ (∇u)u+∇p = 0 in Ω

∇ · u = 0 in Ω

u = ug on ∂Ωu

u = d on ∂Ωd

−pn+ ν(∇u)n = 0 on ∂ΩN

where:

I u(x): velocity field

I p(x): pressure field

I d(s): velocity control on control boundary ∂Ωd

I ug: velocity source on Dirichlet boundary ∂Ωu



Optimal boundary control of Navier-Stokes flow
State equations:

−ν∆u+ (∇u)u+∇p = 0 in Ω
∇ · u = 0 in Ω

u = ug on ∂Ωu

u = d on ∂Ωd

−pn+ ν(∇u)n = 0 on ∂ΩN

Adjoint equations:

−ν∆λ+ (∇u)Tλ− (∇λ)u+∇µ = ν∆u in Ω
∇ · λ = 0 in Ω

λ = 0 on ∂Ωu

λ = 0 on ∂Ωd

−µn+ ν∇(λ)n+ (u · n)λ = −ν(∇u)n on ∂ΩN

Control equations:

ν(∇λ+∇u)n− ρd = 0 on ∂Ωd



Optimal boundary control of Navier-Stokes flow

no control:

control:



Optimal boundary control of Navier-Stokes flow

Algorithmic scalability on 64 and 128 procs for a doubling
(roughly) of problem size:

states
controls

method Newton its avg KKT its time (hr)

389,440 LRQN 189 — 46.3
6,549 LNKS-EX 6 19 27.4

(64 procs) LNKS-PR 6 2,153 15.7
LNKS-PR-TR 13 238 3.8

615,981 LRQN 204 — 53.1
8,901 LNKS-EX 7 20 33.8

(128 procs) LNKS-PR 6 3,583 16.8
LNKS-PR-TR 12 379 4.1



Initial condition inversion of atmospheric

contaminant transport
PDE-constrained optimizaton problem:

min
u,d

1

2

Ns∑
j=1

∫
Ω

∫ T

0

(u− u∗)2 δ(x− xj) dx dt+
β

2

∫
Ω

d2 dx

subject to u̇− ν∆u+ v · ∇u = 0 in Ω× (0, T )

ν∇u · n = 0 on Γ× (0, T )

u = d in Ω× {t = 0}
where:

I u∗(x, t): contaminant observations
I u(x, t): contaminant predictions
I xj: Ns sensor locations
I d(x) initial concentration
I v: known velocity field
I ν: known diffusion coefficient



Initial condition inversion of atmospheric

contaminant transport
State equation:

u̇− ν∆u+ v · ∇u = 0 in Ω× (0, T )

ν∇u · n = 0 on Γ× (0, T )

u = d in Ω× {t = 0}
Adjoint equation:

−λ̇− ν∆λ−∇ · (λv) = −
Ns∑
j=1

(u− u∗)δ(x− xj) in Ω× (0, T )

(ν∇λ+ vλ) · n = 0 on Γ× (0, T )

λ = 0 in Ω× {t = T}
Decision equation:

β u0 − λ|t=0 = 0 in Ω



Initial condition inversion of atmospheric

contaminant transport

Solution of a airborne contaminant inverse problem in the
Greater Los Angeles Basin with onshore winds; Peclet = 10



Initial condition inversion of atmospheric

contaminant transport
Fixed size scalability of unpreconditioned and multigrid
preconditioned inversion; problem size is 2574

CPUs no preconditioner multigrid

hours efficiency hours efficiency
128 5.65 1.00 2.22 1.00
512 1.41 1.00 0.76 0.73
1024 0.74 0.95 0.48 0.58

Isogranular scalability of unpreconditioned and multigrid
preconditioned inversion:

grid problem size CPUs no precond. multigrid

d (u, λ, d) hours iter hours iter
1294 2.15E+6 5.56E+8 16 2.13 23 1.05 8
2574 1.70E+7 8.75E+9 128 5.65 23 2.22 6
5134 1.35E+8 1.39E+11 1024 — — 4.89 5



A peak into why CG is so effective for Hessians

with “compact + identity” structure
At iteration k, CG solves the weighted least squares problem

min
Pk

||ek|| =
∑

i

Pk [λi]
2
ξ2i λi

where Pk is polynomial of order k and e0 =
∑

i

ξivi, Wzvi = λivi

Example spectrum of least squares portion of Hessian (from contaminant
transport inverse problem):

Recall WGN
z

def= JT
d J−T

u WuuJ−1
u Jd + Wdd



Analytical example of Hessian spectrum
1D convection-diffusion with periodic boundary conditions, inversion for initial
condition with final time observations

min
u0

∫ L

0
(u− u∗(T ))2dx+

β

2

∫ L

0
u2

0dx

where: ut − kuxx + vux = 0 in (0, L)× (0, T )
kux(0, t) = kux(L, t) for t ∈ (0, T )
u(0, t) = u(L, t) for t ∈ (0, T )

u = u0 in (0, L)× {t = 0}

Hessian: jth eigenfunction: e2πijx/L, jth eigenvalue: e−8j2π2kT/L2



Bayesian framework
(using Tarantola notation)

I Given:
I a forward model g(m) = d relating model parameters m

with observables d, and its uncertainty

I actual observations dobs and their uncertainty

I a “prior” estimate, of model parameters, mprior, and its
uncertainty

I Seek a statistical characterization of model parameters
consistent with observations, forward model, and prior
model



Bayesian framework
Gaussian uncertainties, nonlinear forward model

If forward model uncertainty is Gaussian:

θ(d|m) = const. exp

„
−

1

2
(d− g(m))T C−1

T (d− g(m))

«
and observation uncertainty is Gaussian:

ρD(d) = const. exp

„
−

1

2
(d− dobs)

T C−1
d (d− dobs)

«
and prior model parameter uncertainty is Gaussian:

ρM(m) = const. exp

„
−

1

2

`
m−mprior

´T
C−1

M

`
m−mprior

´«
Then the posterior model parameter p.d.f. is given by:

σM(m) = k exp (−S (m))

where the misfit function is:

S(m) :=
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)+

1

2

`
m−mprior

´T
C−1

M

`
m−mprior

´

forward model
covariance

observation covariance

prior model parameter
covariance

not Gaussian!

CD = CT + Cd
forward model and measurement
uncertainty combine



Bayesian framework
Gaussian uncertainties, linear forward problem

If modeling, measurement, and prior uncertainties are all Gaussian,
and if in addition the forward problem is linear, i.e.,

Gm = d

Then the posterior p.d.f. for the model parameters is also Gaussian:

σM(m) = k exp (−S (m))

where

2 S (m) := (Gm− dobs)
T C−1

D (Gm− dobs)

+ (m−mprior)
T C−1

M (m−mprior)



Bayesian framework
Gaussian uncertainties, linear forward problem (continued)

Since the posterior p.d.f. for the model parameters is Gaussian, its mean
can be found by maximizing the p.d.f., which is equivalent to solving the
weighted least squares optimization problem:

m̃ = arg min S (m) := ‖Gm− dobs‖2C−1
D

+ ‖m−mprior‖2C−1
M

Note the connection with the regularization approach to inverse
problems: C−1

M plays the role of the regularizer.

The posterior parameter covariance is given by the inverse of the Hessian:

C̃M =
(
GT C−1

D G +C−1
M

)−1

Note also the posterior p.d.f. for the data is also Gaussian, with mean
and covariance given by:

d̃ = Gm̃ C̃D = GC̃M GT



How to compute?

Even in the Gaussian/linear case, the problem can be
intractable for high-dimensional parameter spaces:
mean/covariance computation require “inverse” of Hessian
matrix, which requires as many forward/adjoint solves as there
are parameters.

However, least squares part of the Hessian is often a
discretization of a compact operator; this suggests a low rank
approximation using, e.g., a truncated spectral decomposition:

C̃M =

Sherman-Morrison-Woodbury︷ ︸︸ ︷
(GT C−1

D G︸ ︷︷ ︸+C−1
M )−1

truncated spectral decomposition

The approximate Hessian can then be “inverted” in a constant
number of forward solves.



Example large-scale linear inverse problem
Estimation of initial condition of contaminants from pointwise observations of
concentration and transport equation model

I Given:
I Sparse sensor measurements of contaminant

concentrations

I Convection-diffusion PDE + BCs

I Wind velocity field, contaminant diffusion constant

I We want to:
I Estimate mean and covariance of initial concentration

field

I Predict evolution of concentration uncertainty



Example large-scale linear inverse problem
Flowfield and sensor locations in an urban canyon



Example large-scale linear inverse problem
Least squares optimization formulation

min
u,u0

∑
j

∫
Ω

∫ T

0

(u− u∗)2δ(x− xj) dx dt+
β

2

∫
Ω

u2
0 dx

ut − k4u+ v · ∇u = 0 in Ω× (0, T )

u = u0 in Ω× {t = 0}
k∇u · n = 0 in ΓN × (0, T )

u = 0 on ΓD × (0, T )

u contaminant concentration u0 initial condition

v wind velocity k diffusion coefficient

T length of time window β regularization constant

xj jth sensor location



Example large-scale linear inverse problem
Optimality conditions

State equation:

ut − k4u+ v · ∇u = 0 in Ω× (0, T )

u = u0 in Ω× {t = 0}
k∇u · n = 0 on ΓN × (0, T )

u = 0 on ΓD × (0, T )

Adjoint equation:

−pt − k4p−∇ · (pv) = −
∑
j

(u− u∗)δ(x− xj) in Ω× (0, T )

p = 0 in Ω× {t = T}
(k∇p+ vp) · n = 0 on ΓN × (0, T )

p = 0 on ΓD × (0, T )

Control equation:

−βu0 − p|t=0 = 0 in Ω



Example large-scale linear inverse problem
Constructon of the Hessian

Discretized optimality conditions: BTB 0 AT

0 βI −T T
A −T 0

 u
u0

p

 =

 BTBu∗

0
0


Elimination of u and p blocks yields the equation for u0:

(GT G +βI)u0 = −GT Bu∗

where

G = BA−1T is the forward problem

H = GT G +βI is the (reduced) Hessian

= C̃
−1

M (the inverse of the posterior parameter covariance)



Example large-scale linear inverse problem
Spectrum of the Hessian

Direct computation of H−1 intractable for large scale problems
However, make use of the exponential decay of eigenvalues of
the compact part of the Hessian:

Retain only the dominant part of the spectrum



Example large-scale linear inverse problem
Approximating C̃M (aka H−1)

Low rank approximation of the compact part of H using a
truncated spectral decomposition (e.g. via Lanczos):

H = (V ΛV T + βI) ≈ (VrΛrV T
r + βI)

Now use Sherman-Morrison-Woodbury formula to express posterior
covariance of intial condition field:

C̃M = H−1 ≈ 1
β

(I − VrDV T
r )

where

V,Λ = full eigenvectors and eigenvalues

Vr,Λr = retained eigenvectors, eigenvalues

D = diagonal matrix with Dii = λi/(β + λi)

Vr and Λr can be computed at a cost of a constant number of
forward/adjoint solves (proportional to dimension of range space of
compact part of the Hessian).



Example large-scale computation
Urban canyon with velocity field and sensors



Example large-scale linear inverse problem
Plot of variance field with superposed wind velocity field

Horizontal slice of variance field near ground (left) and near
top of biuldings (right)



Conclusions and topics for further discussion
I Combination of Newton-like methods on the outside with Krylov

methods on the inside often yield optimization methods that scale
well, both algorithmically and w.r.t. number of processors

I Must be prepared to (approximately) solve adjoint PDEs and form
action of Hessian on a vector

I When Hessian is a compact perturbation of the identity,
convergence is mesh independent; with a good preconditioner,
solution can often be found in a small multiple of cost of the
forward problem

I As a result, fast low rank approximations of the compact portion of
the Hessian are possible

I Numerical evidence has been given to illustrate the above, for
problems with up to 130 million inversion parameters

I For linear/Gaussian inverse problems, low rank approximation of the
Hessian serves as a model reduction

I For the general nonlinear/non-Gaussian statistical inverse problems,
how can the structure embedded in the Hessian be exploited?


