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Seismic inverse problems

m Seismic tomography : traveltime inversion for seismi
velocity determination  for seismic imaging of subsurface
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Forward problem : ray tracing (HF approx. of wave eq)
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Seismic inverse problems

m Seismic inversion for impedance determination
for reservoir delineation and characterization

INVERSE
——-

problem
- ——

FORWARD
1 IMPEDANCES

SEISMIC DATA

a priori geological model
built from well data, geological
interpretation, velocity model

Forward problem : convolution of given wavelet and 5
reflection coefficient 1 | e
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Seismic inverse problems

= History matching of production data and 4D
seismic data for characterization of dynamic behavior of

reservoir during the production of a field
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fluid flow simulation in reservoir
petro-elastic modelling

» Petrophysical parameters:
Porosity and permeability
Fault properties

» Well parameters: Skin, PI ...
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Seismic inverse problems

= Traveltime inversion for seismic velocity determinat lon
= 104 velocity parameters
= Time consuming non-linear forward problem (1-2 hour S)
® constraints in optimization : a priori information, well data ...

m Seismic inversion for impedance determination
= 10° parameters
= simplified forward problem = weakly non-linear

m History matching of production data and 4D seismic
m ~100 parameters
= Time consuming forward problem (several hours)
= gradients are usually not available
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Seismic tomography

® Model composed of
= layer interfaces
= velocity variations within layers
both modeled by B-spline functions
m Data : interpreted traveltimes
from seismic data

recognize traveltimes associated
with reflections on a geological layer
Interface

m Least-square formulation

time

min (|7(m) — T2 + [|m — m®riors|| 2, )
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Seismic tomography

= Forward problem : ray tracing
m € R" — T'(m) € R"

= CPU time consuming : lot of (source, receiver) coup les

= non-linear operator : complex wave propagation in t he
subsurface

= cheap computation of the Jacobian matrix
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Seismic tomography

m Constrained non-linear optimization
Large number of constraints

Large variety of constraints

m of different physical natures: on velocity variatio ns, on interface
depths, on their derivatives (e.g. slope of an inte  rface, velocity
gradient ...)

m equality and inequality
m local or global constraints
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Non-linear constrained optimization

min(||T(m) — T2 + |lm — m™"°"||2, )
Em =ce
[<Cm<u

m ~1000 of linear constraints

= Difficulty : determining which inequality constrain ts are
active (among 3 " possibilities)

» adedicated non-linear constrained optimization method
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Non-linear constrained optimization

2 main approaches are possible:

= Penalty methods:
minimization of a sequence of non-linear functions
“cost + constraints” (e.g. Interior Points)

m SQP methods (Sequential Quadratic Programming):
minimization of a sequence of quadratic problems
subject to constraints
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Non-linear constrained optimization

2 main approaches are possible:

= Penalty methods:
minimization of a sequence of non-linear functions
“cost + constraints” (e.g. Interior Points)

> more non-linear function evaluations

m SQP methods (Sequential Quadratic Programming):
minimization of a sequence of quadratic problems
subject to constraints

> each iteration of SOP is complex
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Non-linear constrained optimization

m A Gauss-Newton SQP approach
at iteration Kk, solve a quadratic pb under linear constraints

min(F(6m) = [[Jp(6m) + T(my) — T3, + [5m + my, = m T2, )
m
Eom = e,

~

[, < Com < uyg,

= Augmented Lagrangian method: well-adapted method to solve
large optimization problem

solve a sequence of quadratic pb subject to BOUND co  nstraints

gnin (Lk(5m, y) = Fp.(0m) +>‘§5’T(E5m = ) + 7l Eom — &2
m,y

T
+ AL (Com — y) + 7||Com — y||2)
y = Cdém  (y auxilliary variable)
I <y < g
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Non-linear constrained optimization

m Gauss-Newton SQP method:
sequence of quadratic problems subject to constrain

= Augmented Lagrangian method:
sequence of quadratic problems subject to BOUND con

= determination of the active bound constraints via a
method

= minimization of the quadratic function on the deter
set via a preconditioned conjugate gradient
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An application of reflection tomography

= Application on a 3D North Sea dataset*
layer-stripping approach
strong under-determination in Tertiary layer
127569 traveltime data
5960 unknowns
Unconstrained optimization result
X(km) 20 -25 y(km

RMS of traveltime misfits = 6.1ms
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*courtesy of bp
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An application of reflection tomography

= Proposal:
= introduction of 2300 constraints
= global inversion to avoid bad data fitting for deep layers

often observed with the layer stripping approach

Model obtained with the | Model obtained with the

Constraints UNCONSTRAINED inversion | CONSTRAINED inversion
Mean depth tpal 96m om
mismatch at the 5 tchalk 132m om
well locations behalk 140m Om

Vertical velocity

gradient in Tertiary 0.1<k<0.3/s k=0/s k~0.18/s
2.5 < vpal < 4km/s ok ok
Velocityrange | 3.5 <vichalk < 5.7km/s ok ok
4 2 <« vehalk < 5 8km/s ok ok

+ constraints on layer thickness'
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An application of reflection tomography

= Solution model of constrained optimization:

Constrained optimization result

x(km) 20 -25 y(km)

S 0

RMS of traveltime misfits = 6.5ms
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An application of reflection tomography

m 6 Gauss-Newton iterations (9 function evaluations)

g CPUtime (1 iteration with constraint s)
CPU time (1 iteration without constraint )

=3.19

m afew number of Gauss-Newton iterations is required

m the chosen activation method is efficient even for
a large number of constraints

m no additional weight to be tuned
(automatic tuning of the augmentation parameter)
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Uncertainty analysis

m Linearized framework: analysis of the a posteriori
covariance matrix around the solution

¢ = (Jrcy g+ o)1

o (VC’%)M uncertainties on the inverted parameters

m (Cq’n> _ correlation between the uncertainties
i . . :
qun may be a huge dense matrix: expensive computation for 3D pb

m Our methods to estimate the uncertainties
= Simulations of admissible models
= Uncertainties on geological macro-parameters

= Non linear approach : exploration of admissible space
thanks to constrained optimization
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Simulation of admissible models

m Sample the a posteriori probability density functio n

exp ( - %5mTC7’,,§15m) = exp ( - %5mTUTU5m)

via a Choleski decomposition of the Hessian I = 07’7;1

sample the gaussian probability density function wit h unit
variance via the variable transformation om' = Uédm

» We have access to a range of likely models

» But for 3D problems:
Choleski decomposition may be too expensive
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RMS traveltime misfits = 6.2 ms

n=629%and 6=-4.43 %
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Simulation of admissible models
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Macro-parameters

= |imit the uncertainty analysis to quantities which
are interesting for the geophysicist

= slope of an interface
= vertical variations of the velocity in a region
= layer thickness

m define a macro-parameter: P = Bp
a linear combination of parameters

m Reduced a posteriori covariance matrix in the
macro-parameter space
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Macro-parameters

VP5 | VS5 n o H4 H5
VP5 0@1 m/s! 0.002 -0.03 -0.02 0.005 0.01

H..

"
VS5 0.002 (168.9m/s) -0.04 -0.03 0.005 0.01

n -0.03 -0.04 ( 0.22% 093 ) -016 ( -0.33
N /

)

I

fo) -0.02 -0.03 0.93 1.6% -0.17 -0.36 {)
H4 0.005 0.005 -0.16 -0.17 77.1m 0.06
H5 0.01 0.01 -0.33 -0.36 0.06 80.3 m

Macro-parameter = mean of the depth of the interfac e
Macro-parameter = mean of the velocity
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Non linear a posteriori analysis

= Motivations: limitations of the linearized approach

= |imitations of the quadratic approximation of the n on
linear cost function

m Test other geological scenarii
= try to delimit the space of admissible solutions

= an experimental approach: solve the inverse problem
under geological constraints
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Non linear a posteriori analysis

m Test other geological scenarii

test an hypothesis on 9 values:

could we find a model that fits the datawith 0> 0 ?
whereas simulation approach furnishes only models w

0<0
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An other solution

Constraint= 0>0

12 X(km 23.5
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RMS traveltime misfits = 6.4 ms

n=62%and =2 % .f;_\
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Conclusions

= Optimization
= Develop a dedicated optimization method to handle
constraints

= Allow to integrate lot of different types of additi onal data
geological data, well data ...

= Uncertainty analysis
= Linearized approach : Hessian matrix
= Non-linear approach : guided by geological constra Ints
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