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Inverse problems and statistical inference

J. Kaipio and E. Somersalo: Statistical and Computational Inverse Problems,
Springer 2004.

• Inverse problems: Concerns the problem of retrieving information of
unknown parameters by indirect observations.

• Statistical inference: Concerns the problem of inferring properties
of an unknown distribution from data generated from that distribution.

Why Statistics?

“Statistics is the science of information gathering, especially when the infor-
mation arrives in little pieces rather than in one or two big pieces.”

(Bradley Efron)
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Bayesian perspective to inverse problems

• All unknowns are modelled as random variables.

• Randomness is an expression of the lack of information, or ignorance of
their values.

• Random variables are characterized by their probability distributions.

• Inverse problem: Find the probability distribution of the unknowns
you are interested in.

Note 1: Randomness is not the object’s but the subject’s property1.

Note 2: Computational models predict only observables, i.e., what an ob-
server (subject) can expect.2

1Bruno de Finetti: “Probability does not exist!”
2Niels Bohr: “It is a mistake to think that physics should reveal how the nature is made.

Physics deals with what can be said about the nature.”
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Introductory example

Classical linear inverse problem: estimate x ∈ Rn from the measurement of

y = Ax + noise, y ∈ Rm, A ∈ Rm×n.

Observations:

• Evidently, the value of the noise is not known, so it is natural to model
it as a random variable. (All usually agree about this).

• Hence, the data y must be a realization of a random variable.

• What was the motivation for modelling the noise as random variable?

That we do not know its value!

Do we know the value of x?

No!

So, it equally natural to model x as random variable, too.
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Stochastic extension of the model

Write
Y = AX + E,

where X, Y and E are random variables.

Data = ymeasured

= realization of Y .

Fundamental question: What is the probability distribution of X when
the measured value for Y has realized?
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Probability distributions and densities

Let X be a random variable with values in Rn.

P{X ∈ B} = probability that X ∈ B

= µX(B).

The measure µX is the probability distribution of X.

We assume that it is possible to construct a function πX(x) = π(x) ≥ 0 such
that

µX(B) =
∫

B

π(x)dx.

The function π(x) is the probability density of X.
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Joint probability density

Let X ∈ Rn and Y ∈ Rm be two random variables. The joint probability
density of X and Y , denoted by π(x, y), is defined as

P{X ∈ B1 and Y ∈ B2} =
∫

B1

∫

B2

π(x, y)dxdy.

Two extremal cases are of particular interest:

1. When B1 or B2 become the full space,

2. When B1 or B2 shrink to one point.
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Marginal densities

X ∈ Rn, Y ∈ Rm random variables. Assume that Y can take any value:

P{X ∈ B1 and Y ∈ Rm
︸ ︷︷ ︸
always true

} =
∫

B1

(∫

Rm

π(x, y)dy

)
dx

= P{X ∈ B1} =
∫

B1

π(x)dx.

Conclusion:
π(x) =

∫

Rm

π(x, y)dy.

This is the marginal density of X.
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Marginal density
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Conditional density

Probability that X ∈ B1 provided that Y ∈ B2 is denoted by

P{X ∈ B1 | Y ∈ B2}.
Since both X ∈ B1 and Y ∈ B2 must happen, we deduce that

P{X ∈ B1 | Y ∈ B2} = α P{X ∈ B1 and Y ∈ B2}.

On the other hand, if B1 = Rn the probability has to be one (X ∈ Rn, no
matter what Y does), that is,

P{X ∈ Rn | Y ∈ B2} = αP{ X ∈ Rn
︸ ︷︷ ︸

always true

and Y ∈ B2}

= αP{Y ∈ B2} = 1,

so
α =

1
P{Y ∈ B2} .
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Conclusion:

P{X ∈ B1 | Y ∈ B2} =
P{X ∈ B1 and Y ∈ B2}

P{Y ∈ B2} .

Let B2 shrink to a single point y.

Writing the probabilities in terms of the densities, we find that

P{X ∈ B1 | Y = y} =
∫

B1

π(x, y)
π(y)

dx.

We denote the conditional density as

π(x | y) =
π(x, y)
π(y)

.
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Conditional density
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Likelihood density

Consider the additive noise model

Y = f(X) + E,

where X and E are mutually independent.

What is the probability density of Y if X = x = fixed?

We have
Y = f(x)︸︷︷︸

fixed

+ E︸︷︷︸
random

,

so the only source of randomness in Y is the noise term.
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f(x)

If πnoise is the probability density of the noise,

π(y | x) = likelihood function = πnoise(y − f(x)).
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Prior density

The prior density expresses what we believe of the values of X, whatever value
the observation will later take on.

π(x) = πprior(x) =
∫

Rm

π(x, y)dy.

By the definition of the conditional density,

π(x, y) = πprior(x)π(y | x).

joint density = prior× likelihood.
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Posterior density

Posterior density expresses the probability density of X when Y takes on a
fixed value.

By the definition of conditional densities,

πpost(x) = π(x | y) =
π(x, y)
π(y)

.

Bayes’ formula,

πpost(x) = π(x | y) =
πpr(x)π(y | x)

π(y)
.

Posterior density=solution of the inverse problem.
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Model problem: Imaging blocky signals and images34

Qualitative description of problem:“Given a noisy indirect observation,
recover a signal or an image that varies slowly except for unknown number
of jumps of unknown size and location.”

Examples: Geophysical profiling of layered Earth, optical tomography of
an infant’s head, atmospheric profiling of inversion layers, detection of breast
cancer with EIT, localization of cortical activity by EEG, image segmentation.

Objectives:

1. Develop a fast algorithm to find the discontinuities

2. Estimate the reliability of the algorithm.

3D. Calvetti and E. Somersalo: Gaussian hypermodels and recover blocky objects. In-
verse Problems 23 (2007) 733–754.

4D. Calvetti and E: Somersalo: A unified Bayesian framework for algorithms to recover
blocky signals. Proc. SPIE 2007, San Diego (to appear).

CSRI Workshop, Santa Fe, September 10–12, 2007 0-16 E. Somersalo



E. Somersalo

Prototype problem

1D inverse problem, e.g., deconvolution, continuous model:

g(sj) =
∫

I

A(sj , t)f(t)dt + ej , 1 ≤ j ≤ m,

where ej additive noise.

Discretize by a quadrature rule:

∫

I

A(sj , t)f(t)dt ≈
n∑

k=1

wkA(sj , tk)f(tk) =
n∑

k=1

ajkxk, xk = f(tk),

Discrete model in n–dimensional grid:

b = Ax + e, A ∈ Rm×n,

where bj = g(sj).
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Slow variations: Markov model

First order model:

Xj = Xj−1 + γWj , Wj ∼ N (0, 1), Wj = innovation.

Second order model:

Xj =
1
2
(Xj−1 + Xj+1) + γWj , Wj ∼ N (0, 1).

STD=γx
j−1

x
j

STD=γx
j−1

x
j+1

x
j
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Matrix form

First order: L1X = γW, W ∼ N (0, I),

L1 =




1
−1 1

. . . . . .
−1 1


 , (x0 = 0)

Second order: L2X = γW, W ∼ N (0, I),

L2 =
1
2




2 −1
−1 2 −1

. . . . . . . . .
−1

−1 2




, (x0 = xn+1 = 0)
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Smoothness prior

The Markov model

LX = γW, W ∼ N (0, I), (L = L1 or L2)

implies the prior density model

X ∼ πprior(x) ∝ exp
(
− 1

2γ2
‖Lx‖2

)
.

Observe: The prior parameter γ has an immediate interpretation, reflecting
our prior belief of how large variations we expect.
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Inhomogenous Markov model

Homogenous (or stationary) model: equal variance of every innovation
step.

Inhomogenous (non-stationary) model: every innovation step may have
different variance.

First order model:

Xj = Xj−1 + γjWj , Wj ∼ N (0, 1).

Second order model:

Xj =
1
2
(Xj−1 + Xj+1) + γjWj , Wj ∼ N (0, 1).
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Inhomogenous smoothness prior

Matrix form: Define the prior variance vector,

θ =
[
θ1, θ2, . . . , θn

]T
, γ2

j = θj .

LX = D1/2W, W ∼ N (0, I),

where
D = Dθ = diag(θ1, θ2, . . . , θn).

The prior density of X is then

πprior(x) ∝ exp
(
−1

2
‖D−1/2Lx‖2

)
.

With different selections of θ, we can allow jumps in the solution of the inverse
problem.
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Testing the prior: random draws

To test whether the prior density correspond to our prior belief, draw random
samples from the prior.
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Solve LX = D1/2W , where W ∼ N (0, I).

Note: Jumps (or kinks) possible but they are not forced.
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Markov model with unknown statistics

What if we don’t know

• the location of the jumps,

• the size of the jumps,

• the number of the jumps?

Bayesian solution:

• Model the prior variance vector θ as a random variable Θ

• Estimate the pair (X, Θ) from the data and prior information.
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Hierarchical model

Write a joint prior density for (X, Θ),

πprior(x, θ) = πhyper(θ)πprior(x | θ),

where

πprior(x | θ) =
(

det(LTD−1
θ L)

(2π)n

)1/2

exp
(
−1

2
‖D−1/2

θ Lx‖2
)

.

Observe: The normalizing constant depends on θ and cannot be ignored.

The determinant in 1D can be found explicitly. In 2D and/or with irregular
grids, numerical evaluation necessary.

Do we have to compute the determinant?

No, if we pass. . .

CSRI Workshop, Santa Fe, September 10–12, 2007 0-25 E. Somersalo



E. Somersalo

. . . from signal to increments

Define a new random variable Z,

Z = LX, X = L−1Z,

and write the prior for Z:

πprior(z | θ) =
(

det(D−1)
(2π)n

)1/2

exp
(
−1

2
‖D−1/2z‖2

)

=
(

1
(2π)nθ1θ2 · · · θn

)1/2

exp
(
−1

2
‖D−1/2z‖2

)

=
(

1
2π

)n/2

exp


−1

2
‖D−1/2z‖2 − 1

2

n∑

j=1

log θj


 .
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Likelihood

Simple additive white noise model:

B = AX + E, E ∼ N (0, σ2I)

It is assumed for simplicity that

• the noise E is independent of X (exogenous noise)

• The noise is Gaussian white noise,

E ∼ N (0, σ2I),

Likelihood

π(b | x) exp
(
− 1

2σ2
‖Ax− b‖2

)
,

or, in terms of the increments,

π(b | z) ∝ exp
(
− 1

2σ2
‖AL−1z − b‖2

)
.
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Hyperprior

We expect a priori few jumps: the variance needs to be small except for a few
outliers. Two natural candidate distributions that produce rare outliers:

Gamma distribution: θj ∼ Gamma(α, θ0),

πhyper(θ) ∝
n∏

j=1

θα−1
j exp

(
−θj

θ0

)
= exp


− 1

θ0

n∑

j=1

θj + (α− 1)
n∑

j=1

log θj


 .

Inverse Gamma distribution: θj ∼ InvGamma(α, θ0),

πhyper(θ) ∝
n∏

j=1

θ−α−1
j exp

(
−θ0

θj

)
= exp


−θ0

n∑

j=1

1
θj
− (α + 1)

n∑

j=1

log θj


 .
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Posterior density

Gamma distribution:

π(z, θ | b) ∝ π(b | z, θ)πprior(z | θ)πhyper(θ)

∝ exp
(
− 1

2σ2
‖AL−1z− b‖2− 1

2
‖D−1/2z‖2− 1

θ0

n∑

j=1

θj +
(

α− 3
2

) n∑

j=1

log θj

)
.

Inverse Gamma distribution:

π(z, θ | b) ∝ π(b | z, θ)πprior(z | θ)πhyper(θ)

∝ exp
(
− 1

2σ2
‖AL−1z− b‖2− 1

2
‖D−1/2z‖2−θ0

n∑

j=1

1
θj
−

(
α +

3
2

) n∑

j=1

log θj

)
.
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Algorithms

Several possibilities:

• Compute the MAP estimator (zMAP, θMAP),

• Compute the marginal density of θ maximize the evidence,

θ∗ = argmax
∫

Rn

π(z, θ | b)dz,

and estimate then z from π(z, θ∗ | b),
• Compute the Posterior Mean estimate, e.g., by MCMC methods.

• Estimate the reliability of the point estimates estimate by MCMC.

The first one is fast, the last one in necessary for reliability assessment.
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Fast track: MAP estimate

MAP estimate (xMAP, θMAP) is the minimizer of the negative of the log-
posterior. With Gamma distribution,

F (z, θ) =
1

2σ2
‖AL−1z − b‖2 +

1
2
‖D−1/2

θ z‖2 +
1
θ0

n∑

j=1

θj −
(

α− 3
2

) n∑

j=1

log θj .

Quick iterative solver (cyclic coordinate iteration):

1. Initialize θ = θ0, k = 1.

2. Update z,
zk = argminF (z, θk−1).

3. Update θ,
θk = argminF (zk, θ).

4. Increase k by one and repeat from 2. until convergence.
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This algorithm is fast because . . .

1. Updating w:

zk = argmin
(

1
2σ2

‖AL−1z − b‖2 +
1
2
‖D−1/2z‖2

)
, D = Dθk−1 ,

that is, zk is the least squares solution of the system
[

(1/σ)AL−1

D−1/2

]
z =

[
(1/σ)b

0

]
.

2. Updating θ: θk
j satisfies

∂

∂θj
F (zk, θ) = −1

2

(
zk
j

θj

)2

+
1
θ0
−

(
α− 3

2

)
1
θj

= 0,

which has an explicit solution,

θk
j = θ0


η +

√
(zk

j )2

2θ0
+ η2


 , η =

1
2

(
α− 3

2

)
.

CSRI Workshop, Santa Fe, September 10–12, 2007 0-32 E. Somersalo



E. Somersalo

Gamma distribution and Total Variation

Total Variation (TV) regularization:5

Minimize ∫

I

|Af(t)− g(t)|2dt + κ

∫

I

|Df(t)|dt.

Euler-Lagrange equation

A∗(Af − g) + κD∗
(

1
|Df |Df

)
= 0

with homogenous Neumann boundary conditions.

5Rudin L I, Osher S and Fatemi E: Nonlinear total variation based noise removal algo-
rithms. Physica D 60 259–68.
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Fixed point iteration6:

Given the approximate solution fk−1, new iterate fk by solving

A∗(Af − g) + κD∗
(

1
|Dfk−1|Df

)
= 0. (1)

Finite difference approximation: D → (T/n)L, and D∗ → (T/n)LT,

AT(Ax− b) +

(
nκ

T

√
θ0

2

)
LT

(
D−1

θk−1Lx
)

= 0, θk−1 = |xk−1
j − xk−1

j−1 |,

which are the normal equations of the LSQR problem, with σ2 = nκ/T
√

θ0/2.

6Vogel C R and Oman M E: Fast, robust total variation-based reconstruction of noisy,
blurred images. IEEE Trans. Image Process. 7 (1998) 813–824.
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Inverse Gamma and Perona-Malik

MAP estimation algorithm with Inverse Gamma corresponds to the fixed point
iteration of the equation

A∗(Af − g) + κD∗
(

1
1 + β|Df |2 Df

)
= 0,

where
κ = σ2T 2(α + 3/2)/(n2θ0), β = T 2/(2θ0n

2).

This is in fact the Perona-Malik functional7.

The Perona-Malik functional is also closely related to the Mumford-Shah func-
tional8.

7Perona P and Malik J: Scale-space and edge detection using anisotropic diffusion. IEEE
Trans. Pattern Anal. Mach. Intell. 12 (1990) 629–639.

8Mumford D and Shah J: Optimal approximations by piecewise smooth functions and
associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577–684.
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Statistical Reliability Analysis

Markov Chain Monte Carlo (MCMC): Generate a large sample

{(z1, θ1), (z2, θ2), . . . , (zN , θN )}

that is distributed according to the posterior density.

Block form Gibbs sampler:

1. Initialize by selecting (z1, θ1) and set k = 1.

2. Draw zk+1 from the distribution z 7→ π(z | θk) ∝ πpost(z, θk).

3. Draw θk+1 from the distribution θ 7→ π(θ | zk+1) ∝ πpost(zk+1, θ).

4. Unless k = N , increase k by one and repeat from 2.
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In Practice

Updating of z:

π(z | θk) ∝ exp
(
− 1

2σ2
‖b−AL−1z‖ − 1

2
‖D−1/2z‖2

)
, D = diag(θk),

is Gaussian: solve

[
(1/σ)AL−1

D−1/2

]
z =

[
(1/σ)b

0

]
+ w, w ∼ N (0, I),

where w ∈ Rm+n is a realization of the white noise process.

The updating of θ can be done componentwise: Draw θj from the one-dimensional
density

θj 7→ exp

(
− (zk+1

j )2

2θj
− θj

θ0
+

(
α− 3

2

)
log θj

)
.
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Computed example: Signal and data
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MAP estimate, Gamma hyperprior
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MAP estimate, Gamma hyperprior

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
x 10

−3

CSRI Workshop, Santa Fe, September 10–12, 2007 0-40 E. Somersalo



E. Somersalo

MAP estimate, Inverse Gamma hyperprior
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MAP estimate, Inverse Gamma hyperprior
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MCMC predictive output envelopes, Inverse Gamma hyperprior
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MCMC predictive output envelopes, Gamma hyperprior
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Extension in two dimensions

Special attention to

• How to define the increment vector in the Markov model,

• Image quality, e.g., rotational invariance,

• Memory requirements,

• Computational cost.
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Markov model: Count of variables

Number of pixels Np = N2.

Number of increments (edges) Ne = 2N(N − 1) > Np.

Hence, no one-to-one correspondence.
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N

N+1

N(N−1)

1
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N−1

N

N(N−1)

CSRI Workshop, Santa Fe, September 10–12, 2007 0-46 E. Somersalo



E. Somersalo

Compatibility conditions

The increments are not independent:

+ −

+

−

Number of interior nodes Nn = (N − 1)2.

Count independent edges: 2N(N − 1)− (N − 1)2 = N2 − 1 = Np − 1.

We need one extra condition, e.g., the average of the image.
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How to build the algorithm?

1. Define z ∈ RNe , the vector of the increments over the edges,

2. Define θ ∈ RNe , the variances of the increments,

3. Define one extra degree of freedom zNe+1 ∈ R, e.g., the average of the
image,

4. Using the compatibility condition Mz = 0, express the pixel image in
terms of z,

5. Write a hypermodel,

6. Solve the MAP estimate by alternating iteration.

Skipping the details. . .
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Deblurring of a simple image

Original image 40× 40

Blurring with a Gaussian kernel, FWHV = 3 pixels

Additive Gaussian white noise, STD = 0.5% of max. of the noiseless signal.
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A few iterations

Iteration = 1 Iteration = 2 Iteration = 4
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Bayesian learning, bootstrap prior9

Update your current information based on the latest reconstruction. May look
dubious, but is justified by the hierarchical modelling:

πk
pr(z) = πpr(z | θk), θk = g(zk).

9D. Calvetti and E. Somersalo: Microlocal sequential regularization in imaging. Inverse
Problems and Imaging 1 (2007) 1–11.
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Rotational invariance

The algorithm works well with blocky structures that have edges parallel to
the coordinate axes. For oblique edges, staircasing may occur.
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A better mask for finite difference approximations needed.
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Diffusion operator

Let u = u(r) be a differentiable vector field in R2.

By the Divergence Theorem,

∇ · u(x) = lim
ε→0

1
πε2

∫

{|r−r′|<ε}
∇ · u(r′)dr′

= lim
ε→0

1
πε2

∫

{|r−r′|=ε}
n(r′) · u(r′)dS(r′)

= lim
ε→0

1
πε

∫

S1
θ · u(r + εθ)dθ

= lim
ε→0

Mεu(r).

Approximate

∇ · (λ∇f
) ≈ Mε

(
λ∇f

)
=

1
πε

∫

S1
λ(r + εθ)θ · ∇f(r + εθ)dθ.
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Microlocal model

Replace λ(r + εθ) by a non-linear functional of f ,

λ = λ
[
f
]
(r, θ) =

1
1 + (τ |θ · ∇f(r)|)κ

, τ > 0, κ > 0.

Algorithm:

1. Initialize f0 = 1 and k = 0.

2. Define

fk+1 = arg min
{∫

Q′
|Af(s)− g(s)|2ds + γ

∫

Q

|Mε

(
λ
[
fk

]∇f(r)
)|2dr

}
,

where
λ
[
fk

]
(r, θ) =

1
1 + (τ |θ · ∇fk(r)|)κ

, τ > 0, κ > 0.

3. Increase k by one and repeat from 2 until a stopping criterion is satisfied.
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Example: image zooming

K

Original Interpolated

Forward map is the sparse sampling matrix.
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Limited angle tomography

Detector

Sources

Detector

Sources
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Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 5

Iteration 6 Iteration 7 Iteration 17
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Sectional profiles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1
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True profile
n=1
n=5
n=15
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Speeding up: iterative solvers

At each iteration step, we need to minimize

xk+1 = argmin(‖Ax− b‖2 + ‖Lkx‖2), Lk = L[xk].

• Memory and computational costs require iterative solvers

• In practice, CGLS is the only method of choice

• CGLS is equivalent to solve the normal equations

• Since AT is smoothing, to get sharp edges, an enormous amount of
iterations are required
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Way out: priorconditioners

Whitening: Write

‖A(Lk)−1w − b‖2 + ‖w‖2, Lkx = w,

Instead of solving the original LSQR problem use GMRES to the right pre-
conditioned system

A(Lk)−1w = b, Lkx = w,

regularized by early truncation of the iterations.
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Deblurring example
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True and blurred image
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Deblurring example

Iteration = 1

50 100 150 200 250
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200

250

Iteration = 2
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250

Priorconditioned GMRES, 18 seconds/iteration on a 2GB laptop in Matlab.
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Deblurring example

Iteration = 3
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Iteration = 4

50 100 150 200 250

50

100

150

200

250
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Deblurring example
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More on these topics, see . . .

springer.com
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