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Introduction
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The Knee Problem

A deceptively simple problem:

{

ẏ = 1
ǫ y(y − t), −1 < t ≤ 1,

y(−1) = −1.

We compute with ǫ = 10−4

This causes all kinds of trouble for implicit numerical methods
coupled with “local” time step control

Reference: Some stability aspects of schemes for the adaptive
integration of stiff initial value problems, L. Dieci and D. Estep,
SISC 12 (1991), 1284-1303. That paper has earlier references.
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The Knee Problem

True 

Solution

Time

The solution we approximate is very smooth,

mainly linear in one region and constant in another
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The Knee Problem

True 

Solution

Time

The true solution is extremely stable
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The Knee Problem

True 

Solution

Time

Nearby solutions converge rapidly to the stable solution
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The Knee Problem

True 

Solution

Second 

Solution

Branch

Time

There is a second solution branch that is close near t=0
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The Knee Problem

True 

Solution

Second 

Solution

Branch

Time

The second solution branch is very unstable
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The Knee Problem

True 

Solution

Second 

Solution

Branch

Time

We use an implicit method using Newton’s method 

and so-called “local error” time step control
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The Knee Problem

Numerical

Solution

Time

Such numerical solutions “hop” from the true solution

branch to the unstable solution branch!
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Lessons I Drew from the Knee Problem

• Controlling the “local error” or residual does not actually
control the error in general

• Small numerical errors can lead to unpredictable behavior
• Using implicit methods does not guarantee the correct

dynamical behavior
• The impracticality of enforcing assumptions for a priori

convergence theorems often makes those results moot
• Computing stability information by solving the adjoint

problem can lead to accurate error estimation

This led to my interest in adjoint-based a posteriori error analysis
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Resistance to Error Estimation

In the nineties, the idea that accurate error estimates are useful
met a lot of resistance

Arguments included:
• “There is no scientific need for accurate error estimates”
• “Computational error estimates are not real mathematics

and adjoint analysis is not useful”
• “The cost associated with computing accurate estimates is

prohibitive and such estimates will or can never be
computed”

Of course, analogs of these arguments in the broader context of
uncertainty quantification are still encountered today
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Uncertainty, Verification, and Validation

Today, the climate for error estimation, uncertainty quantification,
and verification and validation is much friendlier

The change is being driven by the needs of scientific disciplines
spanning a diverse range from ecology to engineering dealing
with multiphysics, multiscale systems

The goal has broadened to quantify all sources of uncertainty in
the application of a mathematical model to describe and predict
the behavior of a physical system

Sources include
• uncertainty in the model formulation
• uncertainty in numerical solution of the model
• uncertainty in data and parameters used in the model
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Statistical, Probabilistic, and Deterministic Analysis

The main thesis of this talk is

The problem of quantifying all sources of uncertainty in
computational modeling demands a fusion of
deterministic, probabilistic, and statistical approaches

In my experience, there are disciplinary and communication
gulfs between mathematics, probability, and statistics that
hampers progress in error estimation, UQ, and V&V

This gulf also hampers training of graduate students
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Nonparametric Density Estimation
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Probability Distributions

Let X be a random vector on a probability space (Ω,B, P )

The cumulative distribution function (c.d.f.) of X is the function

FX(s) = P (X ≤ s) (interpreted componentwise)

If FX is differentiable, then ρ = ∂s1
. . . ∂sd

FX is the probability
density function (p.d.f) and

µX(A) =

∫

A
ρdµL

for Borel sets A

We can determine the probability distribution of X by computing
either the c.d.f. or the p.d.f.
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Classic Statistical Problem: Density Estimation

General density estimation

Given a set of observations {Xi} of a random variable
X, determine the corresponding c.d.f or p.d.f. of X

Parametric density estimation

Assume X has one of the standard densities and
estimate the parameters defining that density

Nonparametric density estimation

Let the data {Xi} determined the density to be
estimated, whatever it may be

The point of view of statistics is that the data {Xi} is the only
information known about X
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Solving the Classic Density Estimation Problem

The classic nonparametric solution method is the histogram

Choose an initial point x0 and a bin size ∆x and create bin
nodes xi = x0 + (i− 1)∆x, i = 1, · · · , N

Given samples {Xi}, set

fN (x) =

(

number of Xi in the same interval (xj−1, xj) as x
)

N∆x
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Solving the Classic Density Estimation Problem

The classic nonparametric solution method is the histogram

10− 5− 0 5 10
0

0.1

0.2

0.3

Histogram Computed From 400 

Random Numbers with a Normal Distribution

Bins

R
e

la
ti
v
e

 F
re

q
u

e
n

c
e

s

Donald Estep and Jeff Sandelin, Colorado State University – p. 12/73



Density Estimation for Differential Equations

The density estimation problem for a differential equation is
significantly different

Suppose that y is the solution of a differential equation

L(ẏ, y;λ1) = 0, x ∈ Ω, 0 < t,

together with specified initial and boundary data described by λ0

λ = (λ0, λ1) describes any data and parameters that might vary
or are uncertain

Density estimation for a differential equation

Assuming λ is a random vector with a given distribution,
compute the distribution of a functional of the solution,

q(λ) = q(Y (λ))
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The Chaotic Lorenz Model

As an example, consider the Lorenz equations



















ẋ1 = σ(x2 − x1),

ẋ2 = rx1 − x2 − x1x3, t > 0,

ẋ3 = x1x2 − bx3,

x1(0) = a1, x2(0) = a2, x3(0) = a3,

λ0 = (a1, a2, a3) and λ1 = (σ, r, b)

Parameters might be distributed in a region around the critical
values σ = 10.1, r = 28.0, and b = 8/3, and initial values
distributed around some point

Interesting functionals include solution values, distances from
solutions to a given fixed point, and the number of periods
around a given fixed point
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Estimating a Density for a Differential Equation

Abstract version

Y is a random vector determined by a smooth function
Y = G(λ) of a random vector λ with a specified
probability distribution

We determine the probability distribution of a
continuous functional q(λ) = q(Y (λ)) computed from Y

The computational question is: Can information about G be
used to compute the distribution efficiently?

The solution operator G encapsulates the known information
about processes in the model while λ encapsulates known
information about the data for the model
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All Components are Important

The density of q(Y (λ)) is determined by the distribution of λ and
the properties of G and q

Set q(λ) = G(λ) = tanh(2λ)/ tanh(2) with λ distributed on [−1, 1]
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All Components are Important

The density of q(Y (λ)) is determined by the distribution of λ and
the properties of G and q
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The nonlinearity of q significantly transforms a uniform distribution
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All Components are Important

The density of q(Y (λ)) is determined by the distribution of λ and
the properties of G and q
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Inputting a normal distribution at a point where q behaves linearly results in a normal

distribution on the output
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A Related Problem: Generating Random Numbers

A related statistical problem is generating random numbers from
a nonstandard distribution f on [a, b]

a b

c

f
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A Related Problem: Generating Random Numbers

A related statistical problem is generating random numbers from
a nonstandard distribution f on [a, b]

a b

c

f

x

y
accepted

Accept/Reject Method:

Choose X ∼ U [a, b] and Y ∼ U [0, c]
Accept (X,Y ) if Y ≤ f(X), otherwise reject
A histogram computed from accepted samples
approximates f
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A Related Problem: Generating Random Numbers

A related statistical problem is generating random numbers from
a nonstandard distribution f on [a, b]

a b

c
f

x

y
rejected

Accept/Reject Method:

Choose X ∼ U [a, b] and Y ∼ U [0, c]
Accept (X,Y ) if Y ≤ f(X), otherwise reject
A histogram computed from accepted samples
approximates f
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A Related Problem: Generating Random Numbers

The Accept/Reject Method is powerful tool for stochastic
simulation

Efficiency is an important issue however
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A Related Problem: Generating Random Numbers

The Accept/Reject Method is powerful tool for stochastic
simulation

Efficiency is an important issue however

a b

c

f

High Probability of Rejection

Accept/Reject becomes very inefficient when f leads to a high
rate of rejection
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A Related Problem: Generating Random Numbers

The Accept/Reject Method is powerful tool for stochastic
simulation

Efficiency is an important issue however

a b

c

f

High Probability of Rejection

Accept/Reject can be made much more efficient using
knowledge of f
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Density Estimation for an ODE

Consider the initial value problem

{

ẏ(t;λ) = f(y(t;λ);λ1), t > 0,

y(0;λ) = λ0

with y ∈ R
n and f : R

n+d → R
n, λ = (λ1, λ0)

⊤ ∈ R
d+n

The quantity of interest is a linear functional

q(ω) = q(λ(ω)) =

∫ T

0
〈x(t;λ(ω)), ψ(s)〉ds,

where 〈·, ·〉 is the R
n inner product
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The Adjoint and the Generalized Green’s Function

We assume that λ is a random variable with a specified
distribution

We describe the effect of varying the parameter λ around a
reference parameter value µ = (µ1, µ0)

⊤

The generalized Green’s function solves the adjoint problem,

{

−φ̇(t) −A⊤(t)φ(t) = ψ(t), T ≥ t ≥ 0,

φ(T ) = 0,

A(t) ≡ Dxf(ỹ(t);µ1)

ỹ(t) denotes the deterministic solution at the reference value
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Representing the Variation Using the Adjoint Solution

A variational argument gives

Theorem

q(λ) =

∫ T

0
〈y, ψ〉ds ≈

∫ T

0
〈ỹ, ψ〉ds+ 〈λ0 − µ0, φ(0)〉

+

∫ T

0
〈Dλ1

f(ỹ;µ1)(λ1 − µ1), φ〉ds

The last term on the right describes the effect of variations in the
model parameters

The second to last term describes the effect of variations in the
initial conditions

The result extends to PDEs
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The Point Is ...?

The theorem says that

q(λ) ≈ q(µ) + ∇q(µ)(λ− µ)

where the adjoint problem provides a cheap way to compute
derivatives of the quantity of interest

This uses the special nature of the density estimation problem
for differential equations

There are now multiple ways to use this gradient information to
speed up the computation of the density

We discuss one approach
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Piecewise Representations

To obtain globally accurate approximations:

We choose a sample {µi}
N
i=1 and a partition of subregions

{Ri}
N
i=1 with µi ∈ Ri for all i

We construct a piecewise constant approximation

q̃(λ) =

N
∑

i=1

q(µi)χRi
(λ),

where χRi
is 1 for λ ∈ Ri and 0 otherwise

On Ri, we estimate the error as

q(λ) − q(µi) ≈ ∇q(µi)(λ− µi)
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Fast Adaptive Parameter Sampling

We use the error estimates to guide adaptive sampling

The goal is to achieve the desired accuracy using a minimal
number of sample points

The refinement process works iteratively:
• For a given sample, we estimate the local contributions to

the error using the estimate
• We add new sample points in regions that contribute the

most to the error

We only add sampling points in the direction of the largest
component of ∇q
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The Schaefer Model

The Schaefer Model for harvesting of a fish population x is

{

ẋ(t;λ1) = R
K (K − x(t;λ1)) x(t;λ1) −Hx(t;λ1), t > 0,

x(0;λ1) = x0,

where λ1 = (R,K,H)⊤

We take data ψ(s) = δ(s− 3) and x0 = 1

We assume that H = 0 and (R,K) are independent and
N(0.1, 0.5), N(4.5, 0.1) (truncated) respectively
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Schaefer Model: FAPS Results for H = 0
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.36

.53

We compare a FAPS-computed density to two Monte-Carlo samples (all smoothed with

a Gaussian kernel).
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Schaefer Model: FAPS Meshes for H = 0
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This shows the sampling grid for FAPS along with the points used for the 1000 point

Monte-Carlo density. The center of each rectangle is a sample point in the FAPS density.

Note the pattern of refinement.
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Schaefer Model: Gain in Efficiency using FAPS
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FAPS results

We use the standard K-S statistic to compare rates of convergence. To quantify a rate for

the Monte-Carlo method, we use an expected rate computed using a number of

Monte-Carlo sequences.
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A Predator Prey Example

We model a prey u with a logistic birth/death process consumed
by predator v



















∂tv − δ∆v = λ1v h(u;λ2) − λ3v, Ω × (0, T ],

∂tu− δ∆u = λ4u(1 − u
λ5

) − λ6v h(u;λ2),

∂nv = ∂nu = 0, ∂Ω × (0, T ],

v = v0, u = u0, Ω × {0}

The (Holling II) functional response h(u) = h(u;λ2) satisfies

• h(0) = 0

• limx→∞ h(x) = 1

• h is strictly increasing
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Predator Prey Reference Parameter Values

We assume a (truncated) normal distribution in the region

Description Name Mean Perturbation

encounter gain µ1 1 ±50%

response gain µ2 10.1 ±50%

predator death rate µ3 1 ±50%

prey growth rate µ4 5 ±50%

prey carrying capacity µ5 1 ±50%

encounter loss µ6 1 ±50%

We use the L1 norm of the prey population at t = 10 as the
quantity of interest (ψ = δ(t− 10)(0, 1)⊤)

We use a 12400 point Monte-Carlo computation as a reference
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Predator Prey Results (Cumulative Density)
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We compare the c.d.f. of three FAPS computations to a Monte-Carlo computation with

12,400 points. Each “point” requires solving the PDE.
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Predator Prey Results (Dimension Reduction)
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These are the FAPS sample points for each parameter. Sample points are added only in

directions in which the gradient components are largest, which provides localized

dimension reduction. Here, FAPS only samples µ6 at the midpoint of its range. If we

compare to a computation with forced sampling in µ6, we obtain the same densities.
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Controlling the Numerical Error in Density Estimation

Solving the kernel density estimation problem requires solving
the problem for a variety of data and parameter values

The corresponding solutions can exhibit a variety of behaviors

It is important to control the numerical errors so that they do not
bias the analysis results
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Controlling the Numerical Error in Density Estimation

Example We consider the chaotic Lorenz problem



















u̇1 = −10u1 + 10u2,

u̇2 = λu1 − u2 − u1u3, 0 < t,

u̇3 = −8
3u3 + u1u2,

u1(0) = −6.9742, u2(0) = −7.008, u3(0) = 25.1377

We vary λ ∼ Unif [25, 31]

We use 1000 point Monte-Carlo sampling with both a fixed time
step computation and an adaptive computation with error
smaller than 10−5
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Controlling the Numerical Error in Density Estimation
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Controlling the Numerical Error in Density Estimation
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Distributions for computations with fixed and adaptive time
steps. Note the difference in the horizontal scales!
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Applying Probability to Adaptive Error Control
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A Posteriori Analysis and Adaptive Error Control

Computing accurate error estimates provides the tantalizing
idea of optimizing discretizations

Unfortunately, cancellation of errors complicates the possibility
of defining, let alone computing, an optimal discretization

The existing theory is based on optimal control of error bounds
that ignores cancellation of error

Probabilistic sampling may provide an alternative approach
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The Optimization Approach to Adaptive Error Control

Given a tolerance TOL, an adjoint-based a posteriori error
estimate calls for refinement when

Error in a Q. of I. ≈
∣

∣

(

Residual,Adjoint Weight
)∣

∣ ≥ TOL

Refinement decisions are based on a bound consisting of a sum
of element contributions

Error in a Q. of I. ≤
∑

elements K

∣

∣

(

Residual,Adjoint Weight
)

K

∣

∣

where ( , )K is the inner product on K

The element contributions in the bound do not cancel
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Optimization Approach to Adaptive Error Control

There is no cancellation of errors across elements in the bound,
so optimization theory yields

Principle of Equidistribution: The “optimal” discretization is one
in which the element contributions are equal

The adaptive strategy is to refine some of the elements with the
largest element contributions

In the adjoint weighted residual approach, the element residuals
are scaled by an adjoint weight, which reflects how much error in
that element affects the error in the quantity of interest

A more classic bound has a sum of norms of element residuals
and stability information is taken out as a large constant in front
of the sum
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A Probability Approach to Adaptive Error Control

We first decompose the error in the quantity of interest into
positive and negative contributions

Error in a Q. of I. ≈
∑

positive
contributions

elt. contrib. +
∑

negative
contributions

elt. contrib.

= E+ − E−

We apportion the number of elements N to be refined as

N+ = N
E+

E+ + E−
, N− = N

E−

E+ + E−

The idea is to balance the positive and negative contributions so
they cancel to reach the tolerance
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A Probability Approach to Adaptive Error Control

For E±, we define a probability mass function

p±i =

∣

∣ithelement contribution
∣

∣

sum of element contributions

We select elements for refinement randomly according to p±

Elements with the largest contributions are favored for
refinement, but refinement can occur anywhere

For many quantities of interest, this approach results in
significantly fewer steps than traditional approaches

We may also sample to reduce the variation of element
contributions, increasing reliability on coarse discretizations
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Probabilistic Adaptivity for the Oregonator

We consider the Oregonator problem



















ẏ1 = 2(y2 − y1y2 + y1 − qy2
1) y1(0) = 1

ẏ2 = 1
s (−y2 − y1y2 + y3), y2(0) = 0,

ẏ3 = w(y1 − y3), y3(0) = 0,

s = 77.27, w = .161, q = 8.375 × 10−6

We compute with TOL = 10−8 over time T = 50
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Probabilistic Adaptivity for the Oregonator
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A typical Oregonator solution has long periods during which the solution is moderately

valued and relatively “quiet” punctuated by rapid transients during which the solution

values change enormously. We show a solution during one of the transient periods.
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Probabilistic Adaptivity for the Oregonator
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Element contributions for two quantities of interest: value at the final time (left) and

average error over time (right). The contributions near transient points are much larger.

The classic dual-weighted optimal control approach requires
188,279 time steps

The probability approach requires 20108 time steps
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Should We Think of Numerical Error as Certain?
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Operator Decomposition

Operator decomposition is widely used for solving multiphysics,
multiscale problems

The problem is decomposed into components representing
relatively simple physics and/or single scales and a global
solution is sought by iterating solutions of the components

Operator decomposition discretizes the instantaneous
interaction between the physical components and scales

This creates several new sources of error and instability

I demonstrate with three examples

Donald Estep and Jeff Sandelin, Colorado State University – p. 47/73



A Coupled Parabolic Problem

A parabolic interface problem

{

∂T1

∂t −∇ · (χ1∇T1) = f1, x ∈ Ω1 = (0, 1) × (0, 1)
∂T2

∂t −∇ · (χ2∇T2) = f2, x ∈ Ω2 = (1, 2) × (0, 1)

with coupling conditions

{

T1 = T2,

χ1∇T1 · n = χ2∇T2 · n,
x ∈ Γ = 1 × (0, 1)

We use second order finite elements in space and an implicit
integration method in time for each component
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A Typical Operator Decomposition Solution

Let Tn
i denote an approximation at time tn.

A basic block “Gauss-Seidel” algorithm:

• Given Tn−1
2 , solve for Tn

1 with Tn
1 = Tn−1

2 on the interface.

• Given Tn
1 , solve for Tn

2 with χ2∇T
n
2 · n = χ1∇T

n
1 · n on the

interface
• Move on to tn+1
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A Typical Operator Decomposition Solution

Let Tn
i denote an approximation at time tn.

A basic block “Gauss-Seidel” algorithm:

• Given Tn−1
2 , solve for Tn

1 with Tn
1 = Tn−1

2 on the interface.

• Given Tn
1 , solve for Tn

2 with χ2∇T
n
2 · n = χ1∇T

n
1 · n on the

interface
• Move on to tn+1

Illustration

Domain 1

Domain 2

blue = pass Dir.
red = pass Neum.

tn−1 tn tn+1 tn+2
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A Typical Operator Decomposition Solution

Let Tn
i denote an approximation at time tn.

A basic block “Gauss-Seidel” algorithm:

• Given Tn−1
2 , solve for Tn

1 with Tn
1 = Tn−1

2 on the interface.

• Given Tn
1 , solve for Tn

2 with χ2∇T
n
2 · n = χ1∇T

n
1 · n on the

interface
• Move on to tn+1

There are many other possibilities of course
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Accumulation of the Iteration Error for Gauss-Seidel

With ∆t = 1 × 10−2,

True Solution

OD Solution ∆ t=1E−2
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2
)

The contribution to the error from incomplete iteration dominates the error and it

accumulate as time passes
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Accumulation of the Iteration Error for Gauss-Seidel

Reducing ∆t to 1 × 10−3,

True Solution

OD Solution ∆ t=1E−2

OD Solution ∆ t=1E−3

0 .01 .02 .03 .04 .05 .06 .07
0
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20
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2
)

The iteration error accumulates more rapidly when we decrease the time step by a factor

of 10
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Accumulation of the Iteration Error for Gauss-Seidel

Reducing ∆t to 1 × 10−4,
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Decreasing the step further cause the iteration error to drop significantly
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Transfer Error

For ∆t = 10−3, we iterate at each step until the residual is 10−8

True Solution

OD Solution passing FEM Flux
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0
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o

rm
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However, there is still a significant source of error remaining for small time steps. The

error has reached 5% on a short time interval and worsens considerably as time passes.

The source of error is passing the numerical flux χ1∇T
n
1 · n,

which reduces the accuracy from O(∆t+ ∆x2) to O(∆t+ ∆x)
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Operator Decomposition for an Elliptic System

Consider










−∆u1 = sin(4πx) sin(πy), x ∈ Ω

−∆u2 = b · ∇u1 = 0, x ∈ Ω,

u1 = u2 = 0, x ∈ ∂Ω,

b =
2

π

(

25 sin(4πx)

sin(πx)

)

where information from u1 is passed to the equation for u2

We consider the quantity of interest

u2(.25, .25) ≈ 〈δreg(.25, .25), u2〉

We solve for u1 first and then solve for u2
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Operator Decomposition for an Elliptic System

For the error in u(.25, .25) computed on uniformly fine meshes
discretization contribution ≈ .0042

decomposition contribution ≈ .0006
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Solutions of components 1 and 2

The decomposition contribution to the error is small but
significant
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Operator Decomposition for an Elliptic System

We adapt the mesh while ignoring the contributions to the error
from operator decomposition

The error from decomposition becomes worse
discretization error ≈ .0001

decomposition contribution ≈ .2244
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Decomposition for a Reaction-Diffusion Problem

We consider the reaction-diffusion problem

{

du
dt = ∆u+ F (u), 0 < t,

u(0) = u0

The diffusion component ∆u induces stability and change over
long time scales

The reaction component F induces instability and change over
short time scales
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Decomposition for a Reaction-Diffusion Problem

t
0

t
1

t
2

t
3

t
4

t
5∆t

1
∆t

2
∆t

3
∆t

4
∆t

5 ...

On (tn−1, tn], we numerically solve

{

duR

dt = F (uR), tn−1 < t ≤ tn,

uR(tn−1) = uD(tn−1)

Then on (tn−1, tn], we numerically solve

{

duD

dt − ∆(uD), tn−1 < t ≤ tn,

uD(tn−1) = uR(tn)

The operator decomposition approximation is u(tn) ≈ uD(tn)
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Decomposition for a Reaction-Diffusion Problem
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Decomposition for a Reaction-Diffusion Problem

To account for the fast reaction, we approximate ur using many
time steps inside each diffusion step
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Diffusion Integration:

Reaction Integration:

This is a multiscale time integration scheme
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Decomposition for a Reaction-Diffusion Problem

The Brusselator problem











∂ui

∂t − 0.025 ∂2ui

∂x2 = fi(u1, u2) i = 1, 2

f1(u1, u2) = 0.6 − 2u1 + u2
1u2

f2(u1, u2) = 2u1 − u2
1u2

• Use a linear finite element method in space with 500
elements

• Use a standard first order splitting scheme
• Use Trapezoidal Rule with time step of .2 for the diffusion

and Backward Euler with time step of .004 for the reaction
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Decomposition for a Reaction-Diffusion Problem

10
-3

10
-2

10
-1

10
0

10
1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 ∆t

L
2 n

o
rm

 o
f 

er
ro

r

t = 6.4

t = 16

t = 32

t = 64

t = 80
slo

pe 1

Spatial Location

O
p
er

a
to

r
S
p
li
t

S
o
lu

ti
o
n

On the left, we plot the accuracy versus the time step at a collection of times. For long

times, there is a critical time step above which there is no convergence. This is due to

instability arising from operator decomposition. On the right, we plot a typical unstable

solution. The oscillations are not on the scale of the space mesh.
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A Posteriori Analysis of Operator Decomposition

The conclusion is that numerical solution of multiphysics,
multiscale problems can lead to unpredictable numerical errors

Note: We have adapted a posteriori analysis to operator
decomposition and we can estimate the error in all three cases

The ingredients are
• Estimating the error arising from incomplete iteration
• Estimating the error in information passed between

components
• Estimating the changes to the adjoint arising from operator

decomposition

Mitigating the effects of operator decomposition is usually not a
question of straightforward mesh refinement
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Data Assimilation
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Data Assimilation

Basic problem:

Given the current and past state of a physical system,
what is the best prediction for future behavior?

Data assimilation is a method for fusing data collected from
observation of a system to mathematical models of the
dynamics of the system

Data assimilation is becoming increasingly important in a wide
range of applications

There are enormous financial consequences riding on the
reliability of data assimilation predictions, e.g. climate modeling
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Data Assimilation

A model describing the processes in the system is defined in
terms of parameters and data that characterize a particular state
of the system

The parameters and data in a model are determined by
matching quantities of interest computed from model output to
observations of the state of the modeled system

The model is then integrated forward in time to predict the future
behavior using the “best fit” parameter values

There are many approaches to assimilation
• Estimation theory, e.g. Kalman filtering
• Control theory approaches
• Direct minimization, e.g. simulated annealing, gradient

search
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Data Assimilation

There are many interesting theoretical and computational
problems underlying data assimilation that are waiting to be
tackled

It is probably fair to say that data assimilation has received the
most attention from the statistics-oriented community

One consequence is that current data assimilation practice
focuses on assimilating against state values

This discards information about the sensitivity and stability of
model output determined by the characteristics of differential
equations
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Assimilating for the Lorenz Model

The Lorenz equations are



















ẋ1 = σ(x2 − x1),

ẋ2 = rx1 − x2 − x1x3, t > 0,

ẋ3 = x1x2 − bx3,

x1(0) = a1, x2(0) = a2, x3(0) = a3,

We compute a true solution for r = 24.2, σ = 10, b = 8/3
accurately then introduce small independent random errors to
each solution value to model “measurement” error

We consider parameters drawn from a region r ∼ U(22.2, 26.2),
σ ∼ U(9, 11), b ∼ (5/3, 11/3)
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Assimilating for the Lorenz Model

We assimilate against the norm

(

N
∑

i=1

(

U true
i − Umodel

i

)2

)1/2

where {U true
i } and {Umodel

i } are the true and model observations

We assimilate over [0, 5] using 5000 points and over [0, 20] using
20000 points

As a crude solution to the assimilation problem, we compute a
random selection (1000) of model solutions and choose the
closest
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Assimilation Without Error Control

We show results for a numerical solution computed using fixed
time steps over [0, 20]
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The closest parameter fit leads to a solution that converges to a steady-state, i.e. that

has the incorrect dynamical behavior. Any prediction of behavior of the solution from

time 20 forward will be wrong.
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Assimilation With Error Control

We show results for numerical solutions computed using
adaptive error control

Using 5000 points on [0,5]

 

 
Using 20000 points on [0,20]
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Assimilating over [0, 5] leads to a chaotic solution that begins to diverge immediately

after time 5. Assimilating over [0, 20] leads to another non-chaotic solution.
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Assimilation Using Model Averages

We assimilate against a number of model solutions computed
with adaptive error control and then average the parameter
values

 

True solution

11 model average

129 model average

 

True solution

34 model average

72 model average

Using 5000 points on [0,5] Using 20000 points on [0,20]
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Averaging parameters from a set of closest solutions leads to the same results
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Data Assimilation

Of course, this is a simplistic experiment

It does point to the need to go past the simplest form of data
assimilation

A differential equation determines the sensitivities of quantities
of interest computed from solutions, i.e. derivatives with respect
to data and parameters,

It is interesting to consider assimilating against sensitivity
information as well as state
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Conclusion
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Statistical, Probabilistic, and Deterministic Analysis

Using my limited experience in some fundamental problems in
computational modeling, I have tried to support the claim

The problem of quantifying all sources of uncertainty in
computational modeling demands a fusion of
deterministic, probabilistic, and statistical approaches
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