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IntroductionIntroduction

• Objectives:
– Determine certifiable confidence in model-based predictions:

• Certifiable = amenable to analysis
• Accept the possibility that certain statements, given available resources,

cannot be certified.

– Compute actions to increase confidence in model predictions: change
the information available to the prediction.

• More experimental/field data, more detailed physics, more resolution for
numerics…



Given a  (physics model, data, and computational resources):

 compute limits on predictability
        i.e. which statements about system performance can be certified ?

 compute resource allocation
        (data/computing/modeling) to achieve validation

Two meaningfulTwo meaningful  questionsquestions

Critical steps:
 represent all available evidence as faithfully as possible.
 propagate the weight of the evidence to obtain the corresponding weight

of evidence in prediction.

Probabilistic models package information in a manner suitable for analysis:
– Adapt this packaging to the needs of our decision-maker

• Craft a mathematical model that is parameterized with respect to the relevant
uncertainties.



limit on predictability, given a model

MUST BE QUANTIFIED !!!!

Error BudgetError Budget



Cameron-Martin TheoremCameron-Martin Theorem



Cameron-MartinCameron-Martin

The polynomial chaos decomposition of any square-integrable functional of the
Brownian motion converges in mean-square as N goes to infinity.

For a finite-dimensional representation, the coefficients are functions of the
missing dimensions: they are random variables.

IN SIMPLE WORDS:



The random quantities are resolved as surfaces in

a normalized space:

These could be, for example:

• Parameters in a PDE

• Boundaries in a PDE (e.g. Geometry)

• Field Variable in a PDE

Multidimensional Orthogonal
Polynomials

Independent random variables

Dimension of vector    reflects
complexity of

Representation of UncertaintyRepresentation of Uncertainty



Uncertainty due to small

experimental database

Uncertainty in model
parameters

Dimension of vector    reflects
complexity of

Representation of UncertaintyRepresentation of Uncertainty



Infinite-dimensional case:
This is an exercise in stochastic analysis:
• Hermite polynomials: Gaussian measure  (Wiener: Homogeneous Chaos)

• Charlier polynomials:  Poisson measure   (Wiener: Discrete Chaos)

• Very few extensions possible: Friedrichs and Shapiro (Integration of functionals) provide
characterization of compatible measures.  Segall and Kailath provide an extension to martingales.

Finite-dimensional case: independent variables:
This is an exercise in one-dimensional approximation:
• Askey polynomials:measures from Askey chart  (Karniadakis and co-workers)

• Wavelets: Olivier Le-Maitre

• Multiorthogonal polynomials and local bases: Babuska, Tempone et.al

Finite-dimensional case: dependent variables:
This is an exercise in multi-dimensional approximation:
• Arbitrary measures: Soize and Ghanem.

SomeSome  Common BasesCommon Bases



 Galerkin Projections

 Maximum Likelihood

 Maximum Entropy

 Bayes Theorem

 Ensemble Kalman Filter

Characterization of UncertaintyCharacterization of Uncertainty



Uncertainty Propagation: Stochastic ProjectionUncertainty Propagation: Stochastic Projection



Where:

A posteriori error analysis of SGS:

independent from      and

Spatial discretization error
Random discretization error

A-Posteriori Error AnalysisA-Posteriori Error Analysis



SFEM:Typical system matrixSFEM:Typical system matrix



SFEM:Typical system matrixSFEM:Typical system matrix



SFEM:Typical system matrixSFEM:Typical system matrix



Example ImplementationExample Implementation

Trilinos

Sundance

Optimization/
EnKF

Black Oil

high-level system for
parallel PDE simulation
and optimization and
uncertainty

Object-oriented
Petascale algorithms
for scientific computing

Applications

Ready for Ready for PetascalePetascale::

needneed it and it and
can usecan use it it



ImplementationImplementation

Define
mesh

Define
boundaries

Define
stochastic
bases

Define SFEM
interpolation



Non-intrusiveNon-intrusive  ImplementationImplementation



Implementation: DakotaImplementation: Dakota



Implementation: SalinasImplementation: Salinas

Material 1
name 'Aluminum'
E 10.0E6
nu 0.33
density 253.82e-6

END

Material 3
s_isotropic
name 'mat3.dat'
density 253.82e-6

END

Material 4
s_isotropic
name 'mat4.dat'
density 253.82e-6

END



Example Application: W76 Foam studyExample Application: W76 Foam study

Built-up structure with
shell, foam and devices.

Foam domain.

1. Modeled as non-stationary random field.

2. Accounting for random and structured variations

3. Limited observations are assumed:

selected 30 locations on the foam.

Limited statistical observations: Correlation
estimator from small sample size: interval
bounds on correlation matrix.

System has 10320 HEX elements.

Stochastic block has 2832 elements.



Example Application: W76 Foam studyExample Application: W76 Foam study

 Polynomial Chaos representation of epistemic information

 Constrained polynomial chaos construction

 Radial Basis function consistent spatial interpolation

 Cubature integration in high-dimensions



Foam studyFoam study
Statistics of maximum accelerationStatistics of maximum acceleration

Histogram of average of maximum acceleration



Foam studyFoam study
Statistics of maximum accelerationStatistics of maximum acceleration

Plots of density functions of  the maximum acceleration



Validation ExampleValidation Example

Key contribution:

Reliable uncertainty quantification of model prediction:

 have accounted for specimen-variability and some lack-of-
knowledge uncertainty.

 can be adapted to any reasonable validation logic

The Sandia validation challenge problem:

 Given a few samples from a related experiment

 Given a model (map between input/output)

 Decide whether the model is valid to predict a certain quantity of interest

 If the model is valid, use it to decide on certification of a design



Estimate

%95 probability box

Remarks:

  Confidence intervals are due to finite sample size.

CDF of calibrated stochastic parameters (3 out of 9 shown)CDF of calibrated stochastic parameters (3 out of 9 shown)



Equivalent hypothesis test:

System Response Quantity (SRQ):
Maximum acceleration of the top mass = a3m

Remark:

 Parameters are calibrated  under      .

         = mean of predicted       from linear model.

p
d

f

%95 confidence
interval around

Propagation using calibrated stochastic linear model:

Stochastic

Projection/

Monte Carlo

p
d

f

+
validation force

Validation path: hypothesis testValidation path: hypothesis test



Subsystem validation outcomeSubsystem validation outcome

AcceptedMedium

AcceptedHigh

AcceptedLow
High

AcceptedHigh

AcceptedMedium

AcceptedLow
Medium

AcceptedHigh

AcceptedMedium

AcceptedLow
Low

HypothesisValidation Excitation
Level

Calibration Based
On Excitation

Level



0.0043000.1269High

0.0015000.0662Medium

0.0008300.0835Low

Sample Variance
 of

Sample Mean
 of

Calibration Based On
Excitation Level

Remark: Based on only 25 samples.

Prediction on target applicationPrediction on target application



Solution with 3rd

order chaos

Solution with 3rd

order chaos and
enrichment

Exact solution

Efficiency Issues:Efficiency Issues:    Basis EnrichmentBasis Enrichment



+

Coarse Analysis

A Two-Scale Analysis

Algebraic operations

+

Fine Analysis

Efficiency Issues:  Reduced Order ModelsEfficiency Issues:  Reduced Order Models



Model Reduction: ExampleModel Reduction: Example



Relative Error in Response Mean
X 10-3

Model Reduction: ExampleModel Reduction: Example



Relative Error in Response Variance

Model Reduction: ExampleModel Reduction: Example



  pdf of the Horizontal Displacement At (x,y)=(0,1)

Model Reduction: ExampleModel Reduction: Example



Some Remaining ChallengesSome Remaining Challenges
 Theory:

 Chaos expansions under “epistemic” constraints.

 More on stochastic (and data) error estimation.

 Efficiency:

 Develop adapted linear and nonlinear solvers that take advantage of the
algebraic structure of resulting equations.

 Petascaliziation.

 Adaptation of order of PCE over space.

 Implementation:

 Integrate with black-box computational physics engines.

 Adaptation to full library of equations of state and constitutive equations.

 Matrix-free implementations.

 Couple with sampling-based techniques.

 Challenges associated with large-scale complex computational systems.



ConclusionConclusion

 Very flexible framework for formulating rational statements
and developing suitable models.

 Provides a complete extension for deterministic science that
permits the interpretation of experimental evidence and the
synthesis of information.


