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Introduction

* QObijectives:
— Determine certifiable confidence in model-based predictions:

» Certifiable = amenable to analysis

» Accept the possibility that certain statements, given available resources,
cannot be certified.

— Compute actions to increase confidence in model predictions: change
the information available to the prediction.

« More experimental/field data, more detailed physics, more resolution for
numerics...
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Two meaningful questions

Given a (physics model, data, and computational resources):

» compute limits on predictability

i.e. which statements about system performance can be certified ?

> compute resource allocation

(data/computing/modeling) to achieve validation

Critical steps:
> represent all available evidence as faithfully as possible.

> propagate the weight of the evidence to obtain the corresponding weight
of evidence in prediction.

Probabilistic models package information in a manner suitable for analysis:

— Adapt this packaging to the needs of our decision-maker

« Craft a mathematical model that is parameterized with respect to the relevant
uncertainties.
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Error Budget

U = IAj‘hal,p,m_l_ T ‘|‘€d|m

N _/
V

limit on predictability, given a model
MUST BE QUANTIFIED !!!!

can be reduced through better numerics.

can be reduced through better statistics.

€dlm - Can be reduced through better data.
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Cameron-Martin Theorem

Let x(t) be Brownian motion

{ou(t)} is a CONS in L,[0, 1]

1
/ o,,(t)dx(t) : coordinate of Brownian noise relative to CONS
0

Polynomials w.r.t. to each of these coordinates:

1
qu,p(X):Hm [/ (xp(t)dX(t)] m:(),17’, p:1,27
0

Extend over all coordinates:
‘Pml,...,mp(x) =, 1(x)-- -CIDmp,p(x)

Then

dx—0 as N — oo
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Cameron-Martin

IN SIMPLE WORDS.:

The polynomial chaos decomposition of any square-integrable functional of the
Brownian motion converges in mean-square as N goes to infinity.

For a finite-dimensional representation, the coefficients are functions of the
missing dimensions: they are random variables.
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Representation of Uncertainty
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Representation of Uncertainty

(x.8) = ¥ (Wil Gt G
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'

Uncertainty in model
parameters

/

~

Uncertainty due to small

experimental database

Dimension of vectorg reflects
complexity of O
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Some Common Bases
Infinite-dimensional case:
This is an exercise in stochastic analysis:
» Hermite polynomials: Gaussian measure (Wiener: Homogeneous Chaos)
 Charlier polynomials: Poisson measure (Wiener: Discrete Chaos)

 Very few extensions possible: Friedrichs and Shapiro (Integration of functionals) provide
characterization of compatible measures. Segall and Kailath provide an extension to martingales.

Finite-dimensional case: independent variables:
This is an exercise in one-dimensional approximation:

 Askey polynomials:measures from Askey chart (Karniadakis and co-workers)

» Wavelets: Olivier Le-Maitre

 Multiorthogonal polynomials and local bases: Babuska, Tempone et.al

Finite-dimensional case: dependent variables:
This is an exercise in multi-dimensional approximation:

* Arbitrary measures: Soize and Ghanem.
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Characterization of Uncertainty

a(x,0) =) a(x)Vi({£(0)})
=1

» Galerkin Projections
» Maximum Likelihood
» Maximum Entropy
> Bayes Theorem

» Ensemble Kalman Filter
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Uncertainty Propagation: Stochastic Projection

Discretized Governing Equation:

K(u,x(0))u(0) = £(0),
Expand Basic Uncertain Property:

N

R(0) =) kii(£(0))

=0

N
u = Z uj\lfj(e)
j=0

Expand Solution:

(u) = uo
_ T (2
Ruw = L jujitj (W)
realizations of u can be readily obtained from realizations of &
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A-Posteriori Error Analysis

A posteriori error analysis of SGS:

lell Z3 D)o o) < © {% PEIrIT e La(e) T psrl%xmmxm}

- /
e

Spatial discretization error

Random discretization error

Where:
e=u—up,
r=f+ V. (aVuh,p> in K

C' . independent from hx and
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SFEM:Typical system matrix
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SFEM:Typical system matrix
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Example Implementation

Ready for Petascale:

need it and
can use it

Black Oil

Trilinos

|

v

Sundance

N

Optimization/
EnKF

Object-oriented
Petascale algorithms
for scientific computing

high-level system for
parallel PDE simulation
and optimization and
uncertainty

Applications
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Imbplementation

J¥ We will do our linear algebra using Epetra */
VectorType«doublex vecType = new EpetraVectorType();

Sundance: :init(8argc, 8argv);

/¥ Create a mesh. It will be of type BasisSimplicialMesh, and will
* be built using a PartitionedLinedMesher. */

int np = 128;

MeshType meshType = new BasicSimplicialMeshType();

Define MeskSaurce mesher = new PartitionedLineMesher(@.0, 1008, np, meshType);
mesh @ mesher .getMesh();

/¥ Create a cell filter that will identify the maximal cells
* in the rer of the domain */

Define CellFiltg new MaximalCel IFilter();
; CellFiltgr points = nfw DimensionalCel [Filter{@);
boundaries ¢\ riieke rightPoint)= points.subset(new RightPointTest());
CellFilte = points.subset{new LeftPointTest{));
/% Create the Spectral Basis */
int ndim = 3;
Define int order = 4;

stochastic SpectralBasi new HermiteSpectralBasis{ndim, order);
bases

/* Create unknown and test functions, discretized using first-order

* Lagrange interpolants */
. Expr Se = new UnknownFunction{nedlagrange(2), sbasisd "Se");
Define SFEM  gxpr Ns = new TestFunction{new Lagrangeizy, sbasis, "MNs");

interpolation  Expr Pw = new UnknownFunction{new Lagrange(2),sbasis, "Pu");
Expr Nn = new TestFunction(new Lagrange{2), sbasis, "Mn");

/¥ Create differential operator and coordinate functions */
Expr x = new CoordExpr(@);
Expr dx = new Derivative(d);

/¥ We need a quadrature rul
QuadratureFamily quad = ne
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Non-intrusive Implementation

The solution u is a function of the basic random variables x;:

u= f(x1,...,Xn)

where f(....) is a mapping available through an analysis code.

A Polynomial Chaos Decomposition of the solution has the form:

=T w=f

where the mathematical expectation is evaluated through a statis-
tical average over a finite number of samples.
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Implementation: Dakota

( {nond_polynomial chaos}
{expansion_ terms = <I
{expansion_order <I
{expansion_samples <
{quadrature_order = <
{collocation points <
{expansion_import file = <STRING>)

[samples = <INTEGER>] [see <INTEGER>] [fixed seed]
[ {sample_ type} {random} {1lhs} ]
[ {distribution} {cumulative} {complementary} ]
[ {response_ levels = <LISTof><REAL>}
[num_ response levels = <LISTof><INTEGER>]
[ {compute} {probabilities} {reliabilities} ] ]
[ {probability levels = <LISTof><REAL>}
[num probability levels = <LISTof><INTEGER>] ]
[ {reliability levels = <LISTof><REAL>}
[num reliability levels = <LISTof><INTEGER>] ] )

T T T T T T T T T T T T T T T
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Implementation: Salinas

E P |
Material 1
name 'Aluminum’
== . E 10.0E6
nu 0.33
density 253.82¢-6
R
Material 3

- . s_isotropic @ e
name 'mat3.dat’
m “ END
4 ’

density 253.82¢-6
Material 4

s_isotropic
name 'mat4.dat’
density 253.82¢e-6

END
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Example Application: W76 Foam study

System has 10320 HEX elements.

Stochastic block has 2832 elements. Foam domain.
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1. Modeled as non-stationary random field.

Built-up structure with 2. Accounting for random and structured variations
shell, foam and devices. .

', 3. Limited observations are assumed:
selected 30 locations on the foam.

Limited statistical observations: Correlation
estimator from small sample size: interval
bounds on correlation matrix.
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Example Application: W76 Foam study

» Polynomial Chaos representation of epistemic information
» Constrained polynomial chaos construction
» Radial Basis function consistent spatial interpolation

» Cubature integration in high-dimensions
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Foam study
Statistics of maximum acceleration

Histogram of Mean

Frequency
2
I

[ T I I T I | 1
0.00258 0.00260 0.00262 0.00264 0.00266 0.00268 0.00270 0.00272

Maan

Histogram of average of maximum acceleration
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Foam study
Statistics of maximum acceleration
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Maximum Accalaration

Plots of density functions of the maximum acceleration
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Validation Example

The Sandia validation challenge problem:

» Given a few samples from a related experiment
» Given a model (map between input/output)
» Decide whether the model is valid to predict a certain quantity of interest

» If the model is valid, use it to decide on certification of a design
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CDF of calibrated stochastic parameters (3 out of 9 shown)

0.8 0.8-

06-

CDF

0.4-

2
0 0.2

0 .
0.01 0.02 0.03 0.04 0.05 0

Estimate
————— %95 probability box

CDF,

Remarks:

= Confidence intervals are due to finite sample size.

1 x 10
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Validation path: hypothesis test

System Response Quantity (SRQ):
Maximum acceleration of the top mass = a5,

Propagation using calibrated stochastic linear model:

m(0),c(0), k(0) Stochastic -
B
+ —»  Projection/ » o //\

. N
validation force Monte Carlo -
A a%m a%m
Equivalent hypothesis test: |
|
- ¢ — AV S 1o
| |
Remark: Lo \_
- § —>
Parameters are calibrated under Hg . < > C
0 %95 confidence A3m

=C . .
43m = mean of predicted af _from linear model. interval around
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Subsystem validation outcome

Caggré‘:gi':a'fizf‘ed Validation Excitation | |\ o .
Level Level

Low Accepted

Low Medium Accepted

High Accepted

Low Accepted

Medium Medium Accepted

High Accepted

Low Accepted

High Medium Accepted

High Accepted
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Prediction on target application

Pam := Prob {rp>aox|a(t)| > 1.8(104)in/8662} <1072

Calibration Based On Sample Mean Sample Variance
Excitation Level of Pum of Pun
Low 0.0835 0.000830
Medium 0.0662 0.001500
High 0.1269 0.004300

Remark: Based on only 25 samples.
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Efficiency Issues: Basis Enrichment

J2
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Efficiency Issues: Reduced Order Models

A Two-Scale Analysis
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Model Reduction: Example

Edge fixed in Y-Y direction

F=N

Thickness, t=1.0

Plane strain conditions

Poisson’s ratio, v=0.15

Elastic modules, E=Random field

Elastic Modules
no

o

w=1.0

|
HHHHJ.H|\

ddddddll
[
pad
Edge fixed in X=X direction

2@1.0=2.0

f

¥

2@1.0=2.0 -

(a) (b)

2D solid mechanics problem. (a) Geometry of the problem. (b) A sample
realization of the modules of elasticity E.
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Model Reduction: Example

Relative Error in Response Mean

Relative error in mean

1

05

-0.5

0.5

0
X

1

X103

3.5

12.5

0.5

p:3’q:8 COV(U):%60—%65
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1

05

Model Reduction: Example

Relative Error in Response Variance

Relative error in variance

2 0.03

0.025

-10.02

+10.015

10.01

0.5 1

p:3’q:8 COV(U):%60—%65

0
X
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Model Reduction: Example

pdf of the Horizontal Displacement At (x,y)=(0,1)

x 107
2 T 1
0.1 T T T T T -
— — Full model analysis
— Full model analysis —— Reduced model, Mesh 1
0.09- — Reduced model, Mesh 1| 1 -—-- Reduced model, Mesh 2
0.08 77 Reduced modl, Meeh 3 = {Badiiet] radel; Mesh 3
. ------ Reduced model: Mesh 4 .(—3145- N sz Reduced mode, Mesh 4
0.07+- - = hR\
— ¥ ol N
(=) =] "N
~0.06 - A N
o =) AN
On nr - 1k 4
\50'00_ T O 1 \\
'.6 (= Q)
0.041 - 5 D
Q i)
0.03F _ - "
Bos| '
0.02F - N
L~ * -
0.01F P - ~ - ] ‘\,\
{ )
-010 0 10 - 300 ~ = 406~ 50 %0 35 s 40 45
Horizontal displacement, u(0.0,1.0) Horizontal displacement, u(0.0,1.0)

p+1l=5<<P+4+1=165 COV (u) = %60 — %65
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Some Remaining Challenges
O Theory:

O Chaos expansions under “epistemic” constraints.

O More on stochastic (and data) error estimation.

O Efficiency:

O Develop adapted linear and nonlinear solvers that take advantage of the
algebraic structure of resulting equations.

[ Petascaliziation.

O Adaptation of order of PCE over space.

O Implementation:
U Integrate with black-box computational physics engines.
O Adaptation to full library of equations of state and constitutive equations.
O Matrix-free implementations.
O Couple with sampling-based techniques.

O Challenges associated with large-scale complex computational systems.
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Conclusion
P(E)>0
P(Q)=1
P(AUB) =P(A)+ P(B)

Q Very flexible framework for formulating rational statements
and developing suitable models.

O Provides a complete extension for deterministic science that
permits the interpretation of experimental evidence and the
synthesis of information.



