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• Involve generation and exploration of mapping from analysis 
inputs to analysis results

• Analysis input: x = [x1,x2…,xnX]

• Analysis results: y(x) = [y1(x),y2(x),…,ynY(x)]

• Two Questions
– What is the uncertainty in y(x) given the uncertainty in x?
– How important are the individual elements of x with respect 

to the uncertainty in y(x)?

Sampling-Based Methods for Uncertainty and 
Sensitivity Analysis
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Uncertainty in Analysis Input

• Uncertainty in y derives from uncertainty in x

• Assumption:  Appropriate value for y obtained if appropriate 
value for x used

• Problem:  Impossible to specify appropriate value for x
unambiguously

• Many possible values of x of varying levels of plausibility

• Uncertainty with respect to x
– Designated subjective or epistemic uncertainty
– Characterized by distributions D1,D2,…,DnX assigned to 

elements x1,x2,…,xnX of x
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Propagation of Uncertainty

• Generate sample:  xk, k = 1,2,…,nS

• Evaluate y:  y(xk), k = 1,2,…,nS

• Resultant mapping:  [xk, yk(xk)], k = 1,2,…nS

• Mapping forms basis for
– Uncertainty analysis (distribution functions, box plots…)
– Sensitivity analysis ( scatterplots, regression analysis,…)
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Components of Sampling-Based Uncertainty/Sensitivity 
Analysis

• Characterization of uncertainty in x (i.e., definition of 
D1,D2,…,DnX)

• Generation of sample from x (i.e., generation of xk, 
k = 1,2,…,nS, in consistency with D1,D2,…,DnX) 

• Propagation of sample through analysis (i.e., generation of 
mapping [xk, y(xk)], k = 1,2,…,nS)

• Presentation of uncertainty analysis results (i.e., approximations 
to the distributions of the elements of y obtained from y(xk), 
k = 1,2,…,nS)

• Determination of sensitivity analysis results (i.e., exploration of 
the mapping [xk, y(xk)], k = 1,2,…,nS)
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Example Analysis: Two-Phase Fluid Flow

• Context: Radioactive waste disposal facility in bedded salt

• Mathematics: System of nonlinear partial differential equations

• Numerics: Finite difference procedure on two-dimensional grid

• Uncertainties: 31 uncertain inputs (i.e.,nX = 31)
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Example Analysis: Uncertain Inputs

• Uncertain inputs
– ANRGSSAT-Residual gas saturation in anhydrite
– BHPRM-Logarithm of borehole permeability 
– BPCOMP-Logarithm of bulk compressibility of brine pocket 

Correlation: −0.75 rank correlation with BPPRM
...

– WRBRNSAT-Residual brine saturation in waste
– WRGSSAT-Residual gas saturation in waste 

• Vector representation
x = [x1,x2,…,xnX], nX = 31

= [ANRGSSAT,BHPRM,…,WRGSSAT]
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Example Analysis: Results

• Many analysis results
– Pressure
– Brine and gas saturations
– Gas production due to corrosion and microbial degradation 

of cellulose
– Brine and gas flows across specified boundaries
– and many more

• y(x) = [y1(x),y2(x),…,ynY(x)]
– nY potentially very large
– Elements yj(x) of y(x) functions of time and space, i.e., 

yj(x,y,t,x)
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Characterization of Uncertainty in x

• Corresponds to definition of D1,D2,…,DnX

• Most important part of sampling-based uncertainty/sensitivity 
analysis

• Determines both
– Uncertainty in y
– Sensitivity of y to elements of x

• D1,D2,…,DnX typically defined through expert review/elicitation 
process

• Extensive literature available

• Not primary focus of this presentation
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Observation on the Characterization of Uncertainty in x

• Understand type of information characterized by D1,D2,…,DnX

– Degree of belief with respect to where appropriate value of 
each element of x is located for use in analysis

• Do not confuse uncertainty with spatial, temporal or 
experimental variability
– If analysis uses a spatially or temporally averaged value for 

xj, then Dj should characterize uncertainty in this average, 
not the variability that is averaged over

– Similarly, experimental variability is not the same as 
uncertainty in an analysis input derived from variable 
experimental outcomes
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Possible Construction Procedure for Dj

• Specify 
– Min and max values
– Median
– Quartiles
– Additional quantiles

• Document rationale
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Possible Construction Procedure for Dj with Multiple 
Experts
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Observations on Construction of D1,D2,…,DnX

• Can be most expensive and important part of analysis

• Care and effort dependent on
– Purpose of analysis
– Time and resources available

• Exploratory analysis
– Crude specifications (e.g., uniform and loguniform)
– Will probably reveal dominant variables

• Analysis that forms basis for important decisions
– Care required in construction of D1,D2,…,DnX

– D1,D2,…,DnX influence both uncertainty and sensitivity 
analysis results
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Possible Analysis Strategy

• Perform initial (exploratory) analysis
– Crude definitions for D1,D2,…,DnX

– Identify important variables with sensitivity analysis

• Characterize uncertainty in important variables

• Perform second analysis
– Presentation or decision-aiding analysis
– Use refined distributions for important variables
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Example Analysis: Distributions

• Distributions developed from 31 uncertain variables

• Examples below
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Sampling Procedures: Random Sampling

• Random sample: xk = [x1k,x2k,…,xnX,k], k = 1,2,…,nR

• Sample elements (i.e.,xk’s) from different regions of sample 
space occur in direct relationship to the probability of these 
regions

• Each sample element selected independently of all other 
sample elements
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Sampling Procedures: Importance Sampling

• Importance sample: xk = [x1k,x2k,…,xnX,k], k = 1,2,…,nS

• Sample space divided into strata S1,S2,…,SnS which
– Typically have unequal probabilities
– Assure inclusion of specific regions of sample space in 

analysis

• Sample element xk randomly sampled from strata Sk
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Sampling Procedures: Latin Hypercube Sampling

• Latin hypercube sample (LHS): xk = [x1k,x2k,…,xnX,k], 
k = 1,2,…,nLHS

• Generation of sample
– Range of each x divided in nLHS intervals of equal 

probability 
– Value for xj (i.e., xjk) randomly selected from each interval
– Values for x1 randomly paired without replacement with 

values for x2 to produce nLHS pairs
– Preceding pairs randomly combined without replacement 

with values for x3 to produce nLHS triples
– Process continues through all variables to produce nLHS

sample elements
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Latin Hypercube Sampling: Example

RU1:  U1 =  −0.37 RV1:  V1 = 0.74
RU2:  U2  = −0.20 RV2:  V2 = 1.07

… ...
RU5:  U5 = 0.49 RV3:  V5 = 3.39
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Latin Hypercube Sampling: Example (cont)

x1 = [U1, V5] x1 = [U1, V3]
x2 = [U2, V1] x2 = [U2, V2]

… ...
x5 = [U5, V4] x5 = [U5, V1]
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Comparison of Sampling Techniques

• Random sampling preferred when sufficiently large samples are 
possible 
– Easy to implement
– Easy to explain
– Unbiased estimates for means, variances and distribution 

functions
– Sufficiently large samples may not be possible

• Importance sampling
– Used when random sampling not computationally feasible 

for estimation of extreme quantiles
– Development of strata and strata probabilities often 

challenging
– Requires a priori knowledge about problem
– Event trees are algorithms for defining importance sampling
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Comparison of Sampling Techniques (cont)

• Latin hypercube sampling
– Unbiased estimates for means and distribution functions
– Dense stratification across range of each variable
– Used when large samples not computationally practicable 

and estimation of high quantiles not required
– Preceding is typically the case in uncertainty/sensitivity 

analyses to assess effects of subjective uncertainty
– Uncertainty/sensitivity results robust with relatively small 

sample sizes (e.g., nLHS = 50 to 200)
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Random and LH Sampling: Correlation Control

• Correlation control important
– Correlated variables should have appropriate correlations
– Uncorrelated variables should have correlations close to 

zero

• Imposition of complex correlation structure not easy

• Iman and Conover have developed method to impose rank 
correlations
– Distribution free
– Works with random and LH sampling
– Preserves intervals used in LH sampling
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Correlation Control: Example
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Correlation Control: Example (cont)
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Correlation Control: Example (cont)
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Example Analysis: Generation of Sample

• LH sampling used

• nLHS = 300 samples from nX = 31 variables

• Sample:  xk = [x1k,x2k,…,x31,k], k = 1,2,…,300

• Tests for robustness 
– Sample generated as 3 independent replicated samples of 

size 100 each 
– Individual replicated samples

R1: xk, k = 1,2,…,100
R2: xk, k = 1,2,…,100
R3: xk, k = 1,2,…,100

• Iman/Conover technique used to control correlations
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Propagation of Sample through Analysis

• Generates mapping [xk,y(xk)], k = 1,2,…,nS

• Requires evaluation of y(xj)
– Details analysis specific
– Can be most computationally demanding part of analysis

• Example analysis
– Required 4-5 hrs CPU time per model evaluation on VAX 

Alpha
– Produced large quantity of temporally and spatially variable 

results
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Uncertainty Analysis: Scalar Results

• Single scalar result: yk = y(xk), k = 1,2,…,nS

• Mean and variance
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Uncertainty Analysis: Scalar Results (cont)

• Distribution function
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Example Analysis: CDFs and CCDFs
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Example Analysis: CDF and Density Function
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Example Analysis: Box Plots



34

Uncertainty Analysis: Functions

• Analysis outcomes are often functions of one or more variables

• Uncertain analysis inputs result in many possible values for 
such functions

• Example analysis: pressure as a function of time
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Example Analysis: Pressure at Time t
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Example Analysis: Replicated Samples and Stability
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Sensitivity Analysis

• Involves exploration of mapping [xk,y(xk)], k = 1,2,…,nS
• Available techniques for sensitivity analysis

– Examination of scatterplots and cobweb plots
– Correlation and partial correlation analysis
– Regression analysis
– Stepwise regression analysis
– Rank transforms to linearize monotonic relationships
– Nonparametric regression:  Loess, additive models, projection 

pursuit, recursive partitioning
– Tests for patterns based on gridding:  nonmonotonic relations, 

nonlinear relations
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Sensitivity Analysis (Continued)

– Tests for patterns based on distance measures
– Multidimensional Kolmogorov-Smirnov test
– Tree-based searches
– Squared differences of ranks
– Top-down concordance with replicated samples
– Variance decomposition
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Examination of Scatterplots

• Simplest sensitivity analysis technique

• Points (xjk,yk), k = 1,2,…,nS, plotted for each xj in x

• Resulting plots visually examined for patterns

• Effective with LH sampling due to full stratification over range of 
each xj

• Examples follow
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Example Analysis: Scatterplots
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Stepwise Regression: Ranking Variable Importance

• Order of selection in stepwise procedure

• Changes in R 2 values at successive steps

• Absolute values of SRCs

• With independent sampled variables, three preceding ranking 
procedures produce same ordering of variable importance
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Example Analysis: Pressure at Time t
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Example Analysis: Compact Representation of 
Stepwise Regression

• Compact Summary of Stepwise Regression
Analyses for Pressure in the Repository at
10,000 yr Under Undisturbed Conditions
(i.e., y = E0:WAS_PRES at 10,000 yr)

Stepa Variableb SRCc R2d

1 WMICDFLG 0.718 0.508

2 HALPOR 0.466 0.732

3 WGRCOR 0.246 0.792

4 ANHPRM 0.129 0.809

5 SHRGSSAT 0.070 0.814

6 SALPRES 0.063 0.818
a Steps in stepwise analysis.
b Variables listed in the order of selection in regression analysis.
c Standardized regression coefficients (SRCs) for variables in final regression

model.
d Cumulative R2 value with entry of each variable into regression model.
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Example Analysis: Time-Dependent SRCs and PCCs
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Identification of Nonmonotonic Patterns

• Regression-based sensitivity analyses sometimes perform 
poorly

• Rank transformations possible alternative
– Linearizes monotonic relationships
– Will not help for nonmonotonic relationships

• Example follows
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Example Analysis: Failure of Regression-Based 
Techniques
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Example Analysis: Failure of Regression-Based 
Techniques (cont)

• Examination of scatterplots identified dominant variable
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Test for Nonmonotonic Patterns

• Three tests
– F-test for common means (CMNs)
– χ2-test for common medians (CMDs)
– Kruskall-Wallis test for common locations (CLs)

• Tests based on
– Subdividing values of xj into intervals
– Testing to determine if y has common measure of central 

tendency across these intervals
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Tests for Nonmonotonic Patterns: Subdivision of xj
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Identification of Random Patterns

• Determine if points in scatterplot appear to be random 
conditional on distributions for xj and y

• Based on dividing points into two-dimensional grid

• χ2-test used to indicate if scatterplot appears to be random

• Denoted test for statistical independence (SI)
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Identification of Random Patterns: Subdivision of xj,y
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Additional Information

• J.C. Helton and F.J. Davis, “Sampling-based Methods,” in 
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New York:  Wiley, 2000, pp. 101-153.

• J.C. Helton and F.J. Davis, “Latin hypercube sampling and the 
propagation of uncertainty in analyses of complex systems,”
Reliability Engineering and System Safety, vol. 81, pp. 23-69, 
2003.

• J.C. Helton et al., “Survey of sampling-based methods for 
uncertainty and sensitivity analysis,” Reliability Engineering and 
System Safety, vol. 91, pp. 1175-1209, 2006.


