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All designs used for computer experiments can be classified into

one of two classes

1. “Space-filling” designs – used forverfication of computer

codes, as basis for producing initial estimators ofunknown
process model parameters, for screening (assuming “effect

sparcity”) for quadrature , . . . .

2. “Process-based” designs – used to improvingoverall
prediction, foroptimization of computer output, for

constrained optimization of multiple computer output, for

determining level sets, . . . .
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I. Space-filling Designs

1. Latin Hypercube Designs (LHDs)

2. Maximum Average Distance LHDs

3. Orthogonal Array-based LHDs

4. Maximum Average Distance Symmetric LHDs

5. Quasi Monte Carlo-based Designs

6. Other criteria that lead to space-filling designs



1. Latin Hypercube designs (McKay, et al., TNX, 1979)

• LHDs have uniform marginal projections

• To construct ann run LHD with p inputs, each input∈ [0, 1]

1. Randomly permute1, . . . , n in each ofp columns
2. rescale axis dimensions to[0, 1]
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Critique
• Sampling-based design
• Most packages that find LHDs assume[0, 1]d inputs – rescale.
Non-rectangular regions . . .
• LHDs need not have other projections that are space-filling
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2. Maximum Average Distance LHDs (Welch, TAS, 1985)

• Add distance-spreading criterion to marginal projection

property of LHDs

• To construct a design withn runs inp inputs on[0, 1]p

1. Fix J = set of projection dimensions, e.g.,J = {2, 3}

2. LetX = candidate LHD, ann× p matrix
3. Forj ∈ J , Xj,k = then× j projection ofX into k-th

subset ofj dimensions,1 ≤ k ≤
(

p
j

)
; let dρ(x

j,k
h ,xj,k

i ) = Lρ

distance betweenxj,k
h andx

j,k
i

4. m(ρ,ℓ)(Xj,k) =

(
1

(n
2
)

∑
1≤h<i≤n

[
j1/ρ

dρ(xj,k
h ,xj,k

i )

]ℓ)1/ℓ

= average reciprocal distance between all row pairs ofXj,k



ChooseX to minimize

av(ρ,ℓ)(X) =




1∑
j∈J

(
p
j

)
∑

j∈J

(p
j)∑

k=1

[
m(ρ,ℓ)(Xj,k)

]ℓ



1/ℓ

Spirit Maximize average distance between all projections of all

pairs of inputs

Special CaseX⋆ = arg min av(ρ,ℓ)(X) maximizes min

interpoint distance asℓ→∞

Critique

• Powerful addition to the LHD criterion

• Used by ACED software



Example Maximum Average Distance LHD when

n = 10, p = 3, ρ = 1 = ℓ, J = {2, 3}



3. Orthogonal Array-based LHDs (Tang, 1993; Owen, 1994)

• Another attempt to consider only LHDs that have built-in

“good” projection properties in≥ 2 dimensions.

• To construct ann run design inp inputs, begin with a balanced

orthogonal array OA(n, p, s, t), i.e., ann× p matrix, each

element of which is one ofs possible values and “strength”t

1. “Usual” choice of entries is0, . . . , s− 1

2. Strength All st level combinations forany t columns

occur equally often, i.e., projections of the design onto any t

dimensional subspace produces points that are “spread out”
3. OA designs good for estimating output variation from

low-dimensional effects
4. If possible,t ≥ 3; oftens = 2



Example Tang (1993,Jour. Am Stat. Assoc.) algorithm to

convert OA(8,3,2,3) to an LHD

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

→

4 3 2

2 1 5

1 6 4

3 8 6

8 2 3

6 4 7

7 5 1

5 7 8

using

OA level Design column Permutation

1 {4, 2, 1, 3}

0 2 {3, 1, 2, 4}

3 {2, 4, 3, 1}

1 {8, 6, 7, 5}

1 2 {6, 8, 5, 7}

3 {5, 6, 7, 8}



Example OA-based LHD

OA(16, 3, 4, 2) 2-d projections
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• Tang (1993) algorithm to convert an OA to an LHD which

replaces each level of the OA in each column by a random

permutation of a subset of the integers{1, . . . , n}

0← σ1({1, . . . , n/s}), . . . , s−1← σs({(s−1)(n/s)+1, . . . , n})

• Additionally, can choose an OA-based LHD that maximizes a

distance-based criterion



4. Max Average Distance Symmetric LHDs(Ye et al, 2000)

• Another attempt to consider only LHDs that have built-in

“good” projection properties in≥ 2 dimensions.

• Restrict attention tosymmetric LHDs, i.e., designs such that

if (x1, . . . , xp) is row of then× p design then

(n + 1− x1, . . . , n + 1− xp) must be another row of the design.

Geometrically, plotting the rows of the design inp-space, for

every rowx = (x1, . . . , xp) of the design, there exists another

row that is the reflection ofx



Example of a symmetric LHD



1 6 6 5 9

2 2 3 2 4

3 1 9 7 5

4 3 4 10 3

5 7 1 8 10

6 4 10 3 1

7 8 7 1 8

8 10 2 4 6

9 9 8 9 7

10 5 5 6 2






• Why use SLHDs? The estimator of the linear effects of each

regression variable in a regression+ stationary process model is

uncorrelated with all quadratic effects and bi-linear interactions.



• To construct a design withn runs inp inputs on[0, 1]p, start

with a randomn× p SLHD

1. Choose a symmetric LH design that maximizes some

distance-based criterion (and that spreads points in two– or

higher– dimensional projections)

2. Two standard search algorithms

(a) Columnwise–pairwise algorithm [Ye, Li, and Sudjianto,

2000]
(b) Simulated annealing algorithm [Morris, and Mitchell,

1995]

3. Repeat optimization with multiple starting designs



5. Quasi Monte Carlo-based Designs

Recall Monte Carlo Approximation is a numerical method

used to approximate the integral
∫

[0,1]p
f(x) dx. (1)

MC choosesX1, . . . XN i.i.d uniformly distributed on[0, 1]p

and approximates (1) by

∫

[0,1]d
f(x) dx ≈

1

N

N∑

i=1

f(X i)



Example To approximate

∫

[0,1]5

(
5∏

i=1

xi

)
dx

(
=

1

25
= 0.031250

)

>> X = rand(5000,5);

>> sum = 0;

>> for i=1:5000

>> sum = sum + X(i,1)*X(i,2)*X(i,3)...

*X(i,4)*X(i,5);

>> end

>> mc_approx = sum/5000;

>> disp(mc_approx);

0.03160440066870

which has a1.134% relative error .



Quasi-Monte Carlo Approximation is a competing method

for evaluating ∫

[0,1]p
f(x) dx.

that has better error properties than the MC approximation (the

“Koksma-Hlawka Inequality”). We choose a “low-discrepancy

sequence”x1, . . . xN (such as that of Soból or Niederreiter) and

approximate the integral by

1

N

N∑

i=1

f(xi)



Example (continued)

QMC approximation of
∫
[0,1]5

(∏5
i=1 xi

)
dx = 0.031250

>> X = textread(’5000by5.sobol’);

>> sum = 0;

>> for i=1:5000

>> sum = sum + X(i,1)*X(i,2)*X(i,3)...

*X(i,4)*X(i,5);

>> end

>> mc_approx = sum/5000;

>> disp(mc_approx);

0.03123663971189

which has a0.0427529219520% relative error.



Notes

• Sob́ol or Niederreiter QMC sequences tend to be more
uniformly distributed over[0, 1]p than uniform sequences.
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• In the examples studied by Morokoff and Caflisch, the QMC

method did yield a more accurate result than the standard MC

method with the same number of points.

• Morokoff and Caflisch found that the advantage of the QMC

method isgreater if the integrand issmooth, and the number

of dimensionsp of the integral issmall.

• The GSL library contains programs for generating Soból and

Niederreiter sequences

ReferencesNiederreiter (1992)Random Number Generation

and Quasi-Monte Carlo Methods, Society for Industrial and

Applied Mathematics.

Morokoff and Caflisch (1995) Quasi-Monte Carlo integration, J.

Comput. Phys. 122(2), 218–230.



6. Other criteria that lead to space-filling designs

• Uniform Designs

Idea Choosen points inp inputs on[0, 1]p, so that their

“empirical distribution function” is as close as possible to that of

thep−dimensional uniform distribution.

Fang, Lin, Winker, Zhang (2000) “Uniform Design: Theory and

Application,” Technometrics, 42, 237–248.

• Low-correlation Designs

Idea Choosen points inp inputs on[0, 1]p, so that columns of

the design have low (zero?) correlations

A. Owen (1994) “Controlling Correlations in Latin Hypercube

Samples,”Jour. Am. Statist. Assoc., 89, 1517–1522.



II. Process-based Designs

1. Introduction

• These methods all assume that the truey(·) can be viewed as a

draw from a stochastic process(a Bayesian viewpoint).

• The designs described below are inherentlysequentialor

multi-stage experimental designs. Thus they are particularly

useful when model calculations areexpensive.

• If overall prediction of the response surface is of primary

interest, sequential design based onminimizing the mean
square error of prediction is useful.

• If optimization of the computer model is of interest, methods

based onexpected improvementare effective



• A Process ModelY (z) = f⊤(z)β + W (z)

◦ f(z) ≡ regression functions, andβ ≡ parameters

◦ In computer experiments, often takef⊤(z)β = β0

◦ W (·) ≡ stationary, Gaussian process (GP) with mean

zero, varianceσ2, and “correlation function”R(·) (with

R(0) = 0) so that E{W (z)} = 0, Var(W (z)) = σ2, and

Cov(W (z1),W (z2)) = σ2R(z1 − z2).

◦ ThusE{Y (z)} = f⊤(z)β, Var(Y (z)) = σ2, and

Cov(Y (z1), Y (z2)) = σ2R(z1 − z2).

• Notation Given inputs(z1, . . . ,zn) let

yn = (y(z1), . . . , y(zn))⊤ denote the corresponding

computer outputs



• Application #1 of the Process ModelAssuming a

noninformative prior forβ and completely specified covariance

for Y (z) the predictive distribution of Y (z) is given by

[Y (z)|Y n = yn] ∼ N
(
ŷ(z), s2(z)

)
, where

ŷ(z) = E {Y (z)|Y n = yn}

= fT (z)β̂ + rT (z)R−1
(
yn − F β̂

)

• r = r(z) = (R(z − z1), . . . , R(z − zn))⊤

• R = ( R(zi − zj) ), i, j = 1, . . . , n

• β̂ =
(
F⊤R−1F

)−1
F⊤R−1yn (GLS estimate ofβ)

• F = [f (z1); · · · ;f (zn)]⊤



Example
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while

s2(z) = E
{
(Y (z)− ŷ(z))2|Y n = yn

}

= σ2
{

1− r⊤R−1r + h⊤
(
F⊤R−1F

)−1
h
}

is a measure (almost) of the uncertainty in the predictor where

h = h(z) = f(z)− F⊤R−1r(z)



2. Designs for Minimizing Prediction Error

• As usual, assume thep× 1 inputz has been scaled to[0, 1]p.

LetD = Dn = {z1, . . . ,zn} denote ann-point design.

• Define the integrated mean square prediction error
(IMSPE) criterion as follows:

J(D) =

∫

[0,1]p

1

σ2
E
{
(Y (z)− ŷ(z))2|Y n = yn

}
w(z) dz

◦ E {(Y (z)− ŷ(z))2|Y n = yn} ≡ MSPE ofŷ(z)

◦ ThusJ(D) is the MSPE of̂y(z) “averaged” over[0, 1]p

w.r.t. weightw(z)



• Then-point designDimspe is IMSPE-optimal if it

minimizes the IMSPE criterion function, i.e.,

J(Dimspe) = min
D

J(D)

◦ Under simplifying assumptions that often occur in practice,

an expression forJ(D) can be derived that allows for

straightforward computation.

◦ The IMSPE criterion is related toL-optimality



• The maximum mean square prediction error (MMSPE)
criterion is defined to be

Q(D) = max
z∈[0,1]p

1

σ2
MSPE(ŷ(z))

• Then-point designDmmspe is MMSPE-optimal if

Q(Dmmspe) = min
D

Q(D)

◦ Related toG-optimality



• In Practice The IMSPE and MMSPE criterion functions

depend on unknown GP correlation parameters, sayξ.

Therefore it is difficult to implement these criteria in a

single-stage procedure. In this case, a sequential procedure

is natural. For example,

S0 Start with an initialn-run space-filling designD0, such as a

Maximin LHD. Estimateξ using ML or REML, say, giving

ξ̂n.

S1 AugmentD0 with g candidate points,g ≥ 1,

D = (D0,zn+1, . . . ,zn+g). OptimizeJ(D) or Q(D) using

ξ̂n in place ofξ.

S2 RepeatS1 as desired, updating theξ correlation parameter

estimates after each stage.



3. Designs for Optimizing Complex Computer Models
(Schonlau, 1997; Jones et al., 1998)

• Goal Find z⋆ = argmin
z∈[0,1]p y(z) (especially when

computer model evaluations areexpensive)

• Assume computer model output is a realization of the GaSP

Y (z) = f⊤(z)β + W (z)

• Nomenclature Expected Improvement Algorithms or

Efficient Global Optimization (EGO) Algorithms



An Expected Improvement Algorithm

• Overview

1. Computey(·) at the points in an initial (space-filling)

design.

2. Use the information from the initial runs to select the

next point(s)z to evaluate the code according to an

expected improvement criterion.

3. Continue selecting points using the information from all

of the previous runs until a stopping criterion is met.



• Training Design/Data Dn = {z1, . . . ,zn} and associated

yn = (y(z1), . . . , y(zn))

• (Theoretical) Improvement Let

ymin = min{y(zi) : zi ∈ Dn} = besty(·) computed aftern

output evaluations. For arbitraryz,

in(z) =





ymin − y(z), ymin > y(z)

0, o.w.
,

Not computable becausey(z) is not known



• Probabilistically-based Improvement For arbitraryz,

Im(z) = Im(z;σ2, ξ) =





ymin − Y (z), ymin > Y (z)

0, ow

where theunknown code valuey(z) is replaced by its

(random function) priorY (z), and (σ2, ξ) denotes the

variance and correlation parameters of theW (·) process.



An Expected Improvement Algorithm (in practice)

S0: Choose theinitial set of design pointsDn = {z1, . . . ,zn}

S1: Estimate the variance and correlation parameters of the

W (·) process by ML or REML, saŷσ2
n andξ̂n.

S2: Choose the(n + 1)-st inputzn+1 to maximize theposterior

expected improvement given the data,̂σ2
n andξ̂n, i.e.,

E
{

In(z)|yn, σ̂2
n, ξ̂n

}
.

S3: If the stopping criterionis not met, setSn+1 = Sn∪ zn+1,

calculatey(zn+1), incrementn to (n + 1), and go toS1. If

the criterion is met , predict the global minimizer to be an

element ofSn with code valueymin.



Computation of Posterior Expected Improvement

• The posterior expected improvement has the explicit

closed-form
E { Im(z)|yn } =

(
ymin − ŷ(z)

)
Φ

(
ymin − ŷ(z)

s(z)

)
+ s(z)φ

(
ymin − ŷ(z)

s(z)

)
,

whereΦ(·) andφ(·) are theN(0, 1) cdf and pdf.

• LH term of posterior EI is “large” forz having a predicted

value that is much smaller than the best minimum computed

so far, i.e.,̂y(z)≪ ymin (“local” search)

• RH term of posterior EI is large when there much

uncertainty about the value ofy(z), i.e., whens(z) is large

(“global” search)



• Graphical look at improvement
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An Example

• Two inputs with z = (z1, z2) ∈ [−5, 10]× [0, 15]

• Objective Function : Branin function
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• Three global minima:
y(π, 2.275) = y(3π, 2.475) = y(−π, 12.275) = 0.39789.



EI Algorithm Implemented in SPACE Software

• SPACE available fromhttp://www.schonlau.net/

X < xstart.mat

Y < ystart.mat

Tries = 5

Fit

ObjectiveFunction = branin

XDescription < xdescrip.mat

Minimize

X > xfinal.mat

Y > yfinal.mat

SPACE jobfile

#! /usr/bin/perl

$IN = $ARGV[-1];

open IN, $IN;

$xx = <IN>;

chomp $xx; @x=split " ", $xx;

$n = $x[0]; shift @x;

close IN;

$PI = 3.141593;

$y = ($x[1]-(5.1/(4*$PI**2))*$x[0]**2+

(5/$PI)*$x[0]-6)**2+

10*(1-1/(8*$PI))*cos($x[0])+10;

unshift @x, $n;

push @x, $y;

open OT, ">space.temp";

print OT join(" ",@x), "\n";

close OT;

objective function



Results

• 21 starting points from a Maximin Latin hypercube design

• SPACE added 12 points prior to terminating

• z⋆ = (3.14042, 2.27273), ymin = y(z⋆) = 0.39790
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Modifications and Extensions

• EI algorithms can be run in stages, where each stage involves
adding multiple input sites. Correlation parameter re-estimation
occurs between stages.

• There is no unique improvement criterion for any given class
of problems. For example,In(z) can be modified to provide the
user with more control over the trade-off between global and
local search: Letg be a non-negative integer and define
Ig
m(z) = (ymin − Y (z))g for Y (z) < ymin and0 otherwise.

Larger values of g correspond to a moreglobal search.

• There are no proofs (except in trivial cases) that EI algorithms
converge to global optima, but there are many case-studies
where they have performed well when compared to other Global
Optimization algorithms.



• The EI algorithm has been extended in numerous ways to

accommodate situations where (1) there are diffference types of

inputsz, (2) there aremultiple, competing outputs, and (3) the

outputy(z) is clearly not stationary (Lee et al., SAMSI 2007)

Examples of Extensions

1. Suppose one subset of the inputs are engineering design

variables and the remainder are “field” variables to be

integrated with respect to a given probability distribution.

Minimize
∫

y(z)f(zsubset)dzsubset (Williams et al. 2000)

2. Find{z : y(z) = α}, the set ofz which areα-quantiles of

y(z) (Roy, 2007, PhD Thesis in progress)

3. Constrained optimization of one output subject to bounds

on other computer outputs, i.e.,



min y1(z)

subject to

y2(z) ≤ B

(Williams, submitted)

4. Determine the Pareto Frontier of multiple output functions

(Bautista, 2007, PhD Thesis in progress)



III. Summary

• “Space-filling” designs can be used as a tool to explore input

space of a computer code as part of theverfication process, for

screening when “effect sparcity” holds, and are the basis for

producing initial estimators ofunknown process model

parameters

• “Process-based” designs – used to improvingoverall
prediction, foroptimization of computer output, for

determining level set of an output function, forconstrained
optimization of multiple computer outputs, for determining the

Pareto Frontier of multiple computer outputs, . . .

Questions?


