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Uncertainty & Risk Assessment

• Epistemic uncertainty: “the uncertainty attributable to incomplete

knowledge about a phenomenon that affects our ability to model it”

• Aleatory uncertainty: “the uncertainty inherent in a nondeterministic

(stochastic, random) phenomenon”

Wisdom begins with the acknowledgment of uncertainty—of the

limits of what we know. David Hume (1748), An Inquiry Concerning Human

Understanding



Challenges of Probability

“In making predictions and judgments under uncertainty, people

do not appear to follow the calculus of chance or the statistical

theory of prediction. Instead, they rely on a limited number

of heuristics that sometimes yield reasonable judgments and

sometimes lead to severe and systematic errors” (Kahneman and

Tversky, 1973;1982)

Evolutionary psychology (the evolution of the human brain did not

require the concept of probability)

Neuropsychology (the human brain is wired to operate with whole

numbers),

Probability and statistics are not taught properly from the point of

view of human cognition (Keeler and Steinhorst, 2001)



Probabilistic Risk Assessment (PRA)

• The Three Mile Island nuclear power plant accident, 1979

• The Space Shuttle Challenger disaster, 1986

• U.S. Congress, Natl. Res. Council (also, NRC, 1997):

– Risk assessment must be probabilistic

– Probabilities must be subjective

– “The main focus of PRA should be on uncertainty quantification”

• PRA should answer the following three questions:

– What can happen?

– How likely is it to happen?

– Given that it occurs, what are the consequences?



Risk of Contamination

Modern ”science-based predictions” should be probabilistic. In

subsurface hydrology, they must account for

• Model or structural uncertainty

– geologic models

– physical (geochemical, etc) models

– their mathematical representations

• Parametric uncertainty

– sparse data, etc. toxics.usgs.gov

Probabilistic Risk Assessment (PRA) is an ideal framework for

uncertainty quantification



Algorithm for Probabilistic Risk Assessment

• Identification of a system’s components

• Construction of a fault tree or a binary decision diagrams

• A cut set representation of a fault tree using Boolean operators

• Computation of the probability of system’s failure



Identification of System’s Components

Basic events:

• Spill occurs (SO)

• Natural attenuation fails (NA)

• Remediation effort fails (RE)

Goal: assess the probability of aquifer contamination (AC)

The Excess Lifetime Cancer Risk (ELCR) factor,

ELCR = αC, α =
IR× EF

365 days× BW

IR = human ingestion rate, EF = exposure frequency, BW = average body weight



Fault Tree Ananlysis

AND

OR
Spill occurs

Aquifer contamination

Remediation effort
fails

Natural attenuation
fails

Minimal Cut Sets: {SO, NA} and {SO, RE}

Cut Set Representation: AC = SO ·NA + SO · RE

Probability of aquifer contamination at time t = T :

P [AC] = P [SO ∩NA] + P [SO ∩ RE]− P [SO ∩NA ∩ RE]



Probability Models

Probability of aquifer contamination at time t = T :

P [AC] = P [SO ∩NA] + P [SO ∩ RE]− P [SO ∩NA ∩ RE]

Operational approximations:

• Rare vent approximation: P [AC] ≈ P [NA] + P [RE]

• Common cause approximation:

P [NA ∩ RE] ≈ P [NA|PF]P [PF] + P [NA]P [RE]P [PF′]

• “Markov jump process” approximation



Probability Models: Markov Jump Process

Assumptions:

1. State transitions form a Markov

process

2. Transition times are direction-

independent, Pσ′σ′′[0 < τ < t′′] = Fσ′(t
′′)Qσ′σ′′

State State description

U The site is uncontaminated
S A spill has occurred
R The site is undergoing remediation
N The site is undergoing natural attenuation
C The aquifer is contaminated

Transition Outcome of the transition

US The site is contaminated by a spill
SR The contaminant escapes the waste site
SU The spill is contained on site
RN Remediation fails
NC Natural attenuation fails
RU Remediation succeeds
NU Natural attenuation succeeds

“Markov jump process” approximation:

PUC(0, tcrit) = QUSQSRQRNQNCI(tcrit)

Qσ′σ′′ – probability of the state transition ever occurring

Fσ(tσ) =
∫ tσ

0
qσe−qστσdτσ – distribution of the transition time



Computation of Probabilities

Stochastic methods for quantification of

• Model uncertainty

– Fine-scale simulations of coarse-grain models

– Bayesian maximum entropy approach

– Maximum likelihood Bayesian averaging

• Geologic / geometric uncertainty

– PDEs on random domains

• Parametric uncertainty

– PDF methods

– Moment equations

– Stochastic FEMs



Uncertainty in Reactive Systems

A (reversible) chemical reaction between n species A1, A2, . . . , An:

α1A1 + α2A2 + . . . + αmAm
αm+1Am+1 + . . . + αnAn

Model: The concentration Ci(t) ≡ [Ai] satisfies a rate equation

dCi

dt
= Fi(C1, C2, ...Cn), i = 1, . . . , n

Model (and aleatory) uncertainty: Imperfect knowledge about the

functional forms of Fi (i = 1, . . . , n).

Parametric uncertainty: Imperfect knowledge about the coefficients

entering the functions Fi (i = 1, . . . , n) and/or initial concentrations.



Quantification of Model Uncertainty

Master equation: PDF of collisions between the molecules of Ai

Modified Gillespie algorithm: Reaction PDF P (τ, µ) for reaction µ

to occur in the infinitesimal time interval [t + τ, t + τ + ∆τ ] given a

certain state at time t.

Residence time τ , during which no reactions occur, depends upon

the total molecular population of all reacting species and reflects the

randomness of collisions.

A constant deterministic value to τ corresponds to standard reaction

rate equations

dCi

dt
= Fi(C1, C2, ...Cn), i = 1, . . . , n



Quantification of Model Uncertainty (cntd.)

Modified Gillespie algorithm:

1. Compute the total number of reacting pairs of molecules available

for each reaction ai, and compute their sum a0 =
∑

ai

2. Generate random numbers r1 and r2 on the uniform unit interval

and m uniformly random on the interval [1, 10]

3. Compute τ = −ma−1
0 ln r1

4. Determine which reaction µ occurs by taking µ to be that integer

for which
∑µ−1

j=1 aj < r2a0 ≤
∑µ

j=1 aj

5. Update time by τ and molecular levels for reaction µ (decrease

reactants by 1 and increase products by 1)

6. Repeat steps 1-5 until either of the reactant population goes to

zero or steady state is reached



Example: Neptunium Ion Exchange

Reacting system:

NpO
+
2 + {tAl − Na} → {tAl − NpO2} + Na

+

{tAl − NpO2} + Na
+ → NpO

+
2 + {tAl − Na}

Ca
2+

+ 2{tAl − Na} → {2tAl − Ca} + 2Na
+

{2tAl − Ca} + 2Na
+ → Ca

2+
+ 2{tAl − Na}

Standard deterministic model:

dC1
dt

= −k1C1C4 + k2C2C3 − 2k3C
2
1C6 + 2k4C

2
2C5,

dC2
dt

= k1C1C4 − k2C2C3 + 2k3C
2
1C6 − 2k4C

2
2C5,

dC3
dt

= k1C1C4 − k2C2C3,
dC4
dt

= −k1C1C4 + k2C2C3,

dC5
dt

= k3C1
2
C6 − k4C

2
2C5,

dC6
dt

= −k3C1
2
C6 + k4C

2
2C5



Neptunium Ion Exchange: UQ
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Parametric Uncertainties
Modeling Uncertainties
Combined Uncertainties
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Neptunium Ion Exchange: UQ

Distribution coefficient Kd = C3/C4:
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Parametric U Model U Joint U

Reactive transport (instantaneous adsorption):

ωR
∂C

∂t
= ∇ ·

(
D̃∇C

)
−∇ · (vC) , Rc = 1 +

1− ω

ω
ρsKd



Quantification of Parametric Uncertainty

• Real systems are characterized by

– Non-stationary (statistically inhomogeneous)
– Multi-modal
– Large variances
– Complex correlation structures

• Standard SPDE techniques require

– Stationarity (statistically homogeneity)
– Uni-modality
– Small variances
– Simple correlation structures (Gaussian, exponential)

• Random Domain Decomposition allows one

– to incorporate realistic statistical parameterizations
– to enhance predictive power
– to improve computational efficiency



Strategy for Random Domain Decomposition

• Step 1: Decomposition of the parameter space (image processing

techniques; probability maps)

• Step 2: Conditional statistics (noise propagation; closures)∫
L{Π}u f({Π}|γ) d{Π} → 〈u|γ〉

• Step 3: Averaging over random geometries

〈u〉 =
∫
〈u|Γ〉 f(Γ) dΓ



Step 1: Parameter Space Decomposition

Parameter field:

• Indicator kriging

• Statistical learning theory (SVM)

• Nearest neighbor classification



Steps 2-3: PDEs on Random Domains

• Find u = u(x;ω) ∈ D × Ω → R,{
L(x;u) = f(x), x ∈ D(ω)

B(x;u) = g(x), x ∈ ∂D(ω)

• Probability space (Ω,A,P)
– Ω is a set of events
– A = 2Ω is the σ-algebra
– P is a probability measure

• Physical space: D(ω) ∈ Rd

– ∂D(ω) is sufficiently smooth

Scales of roughness

Assumption: The problem is well-posed P-a.e. in Ω.



Computational Approach

• A deterministic equation in a random domain{
L(x;u) = f(x), x ∈ D(ω)

B(x;u) = g(x), x ∈ ∂D(ω)

• Step i: Stochastic mapping

ξ = ξ(x;ω), x = x(ξ;ω) x ∈ D(ω), ξ ∈ E

• Step ii: Solving a random equation in a deterministic domain{
L(ξ;u;ω) = f(ξ;ω), ξ ∈ E

B(ξ;u;ω) = g(ξ;ω), ξ ∈ ∂E



Step i: Random Mapping

• Surface parameterization

– Karhunen-Loève

representations

– Fourier-type expansions

– Etc.

• Numerical mappings, e.g.,

∇2
ξxi = 0 xi|∂E

= xi|∂D(ω)

• Analytical mappings

x1

x2

ξ1

ξ2

D(ω)
E

Q1 Q2

Q3

Q4

P1 P2

P3P4

ξ=ξ(x)

x=x(ξ)

Random mapping, D(ω) → E



Step ii: Solving Stochastic PDEs

• Stochastic PDE{
L(ξ;u;ω) = f(ξ;ω), ξ ∈ E

B(ξ;u;ω) = g(ξ;ω), ξ ∈ ∂E

• Generalized polynomial
chaos expansions

u(ξ, t;ω) =
N∑

i=1

ai(ξ, t)Ψi(ω)

– Choose an orthogonal polynomial
basis

– Reduce N

Correspondence between the type of the Wiener-Askey

polynomial chaos and their underlying random variables.

Distribution Polynomials

Gaussian Hermite
Gamma Laguerre
Beta Jacobi

Uniform Legendre
Poisson Charlier
Binomial Krawtchouk

Negative binomial Meixner
Hypergeometric Hahn

Xiu & Karniadakis, SIAM J. Sci. Comp. (2002)



Computational examples

• Steady-state diffusion (SISC, 2006)

∇2u(x;ω) = 0, x ∈ D(ω)

– Rough channel

– Rough exclusion

– Numerical mapping

• Transport by Stocks flow (JCP, 2006)

∂u

∂t
+ v · ∇c = a∇2u, x ∈ D(ω)

– Lubrication approximation

– Analytical mapping

u = 1

u = 0 u = 0

u = 0
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Conclusions

• PRA frameworks provide

– efficient mode reduction strategies

– comprehensive treatment of structural (model) and parametric

uncertainties

– the use of subjective probabilities, i.e., the reliance on expert

knowledge

• PRA is an ideal translator from the language of science to the

language of decision makers


