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Introduction

•Verification and Validation concerns the reliability of
computational models (mathematical models + numerical
simulations).

•It aims to answer the question: can we base an important or
critical decision only on the outcome of a mathematical
models?

Goal (from ASME Guide to V&V, 2006)

To develop standards for assessing the correctness and credibility
of modeling and simulation in computational science.
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Where V&V is relevant

To reduce the amount of experiments in regulatory
requirements. Ideally, one wishes to prove that a new
industrial design satisfies given regulatory requirements
only upon a computational analysis. Can we trust the
results?

Whenever experiments on the physical system of interest
are too expensive or cannot be done.
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Definition of V&V (from ASME Guide)

Verification. The process of determining that a
computational model accurately represents the underlying
mathematical model and its solution.

Verification: are we solving the equations right?

Validation. The process of determining the degree to
which a model is an accurate representation of the real
world for the perspective of the intended uses of the
model.

Validation: are we solving the right equations?
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Ingredients for V&V

Verification includes:

Code Verification: correctness of code implementation;
check with exact solutions; etc...
Calculation Verification: analysis of the numerical
method, convergence, a-posteriori error estimation for
the desired output, etc...

Validation implies comparison with experiments

Verification should come before Validation

Experimental measurements should be verified, too.



V&V framework SANDIA Static Frame Validation Problem Solution procedure Conclusions

Ingredients for V&V

Verification includes:

Code Verification: correctness of code implementation;
check with exact solutions; etc...
Calculation Verification: analysis of the numerical
method, convergence, a-posteriori error estimation for
the desired output, etc...

Validation implies comparison with experiments

Verification should come before Validation

Experimental measurements should be verified, too.



V&V framework SANDIA Static Frame Validation Problem Solution procedure Conclusions

Ingredients for V&V

Verification includes:

Code Verification: correctness of code implementation;
check with exact solutions; etc...
Calculation Verification: analysis of the numerical
method, convergence, a-posteriori error estimation for
the desired output, etc...

Validation implies comparison with experiments

Verification should come before Validation

Experimental measurements should be verified, too.



V&V framework SANDIA Static Frame Validation Problem Solution procedure Conclusions

Ingredients for V&V

Verification includes:

Code Verification: correctness of code implementation;
check with exact solutions; etc...
Calculation Verification: analysis of the numerical
method, convergence, a-posteriori error estimation for
the desired output, etc...

Validation implies comparison with experiments

Verification should come before Validation

Experimental measurements should be verified, too.



V&V framework SANDIA Static Frame Validation Problem Solution procedure Conclusions

Ingredients for V&V

Verification includes:

Code Verification: correctness of code implementation;
check with exact solutions; etc...
Calculation Verification: analysis of the numerical
method, convergence, a-posteriori error estimation for
the desired output, etc...

Validation implies comparison with experiments

Verification should come before Validation

Experimental measurements should be verified, too.



V&V framework SANDIA Static Frame Validation Problem Solution procedure Conclusions

Ingredients for V&V

Verification includes:

Code Verification: correctness of code implementation;
check with exact solutions; etc...
Calculation Verification: analysis of the numerical
method, convergence, a-posteriori error estimation for
the desired output, etc...

Validation implies comparison with experiments

Verification should come before Validation

Experimental measurements should be verified, too.



V&V framework SANDIA Static Frame Validation Problem Solution procedure Conclusions

Basic notions and definitions

Prediction problem

The purpose of computation is to provide the quantitative
data of interest (sometimes called quantities of interest)
on which a decision is made.

Experimental analysis of the prediction problem is too
costly or unfeasible. The prediction is based only on the
mathematical model.

Mathematical model.

Structure: type of equations and functional relations
between input and output

Input Data: parameters values or ranges (coeffs.,
boundary conds., geometry, etc.) in the math. model
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Basic notions and definitions

The mathematical model only transforms the available
information into the prediction of the quantity of interest.

Q = M(Θ),

Q : quantity of interest

M : structure of the mathematical model

Θ : input data

It can also map uncertainty ranges (sets) for input data into
corresponding uncertainty sets for the output quantity.
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Basic notions and definitions

Calibration experiments

Simple experiments to identify (if necessary) some of the
input data of the mathematical model.

They are much simpler than the prediction problem and
can be described, eventually, by simpler math. models.

Validation/Accreditation experiments

Are easier than the prediction problem and experimental
measurements can be obtained.

The comparison between computational model and
experiments is based on a suitable validation metric.

If the computational model fails to meet tolerances set a
priori by the analyst, the model is rejected.

The validation experiments, metrics and tolerances have
to be related (and relevant) to the prediction.
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A framework for V&V

verification

verification

verification
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experiment 2
validation rejection?

yes

no

rejection?
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experiment 1
rejection?

yes

no

accreditation

Prediction

Mathematical
model

calibration

validation



V&V framework SANDIA Static Frame Validation Problem Solution procedure Conclusions

The validation pyramid

Ref: Prof. Babuska’s morning discussion.

[Courtesy of Mr. S. Guinard, EADS
Corporate Research]

Typically, number
of experimental
measurements
decreases with
increasing
complexity
of the valida-
tion/accreditation
experiments
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On the validation/accreditation steps

Choice and amount of validation/accr. experiments

Choice of validation/accr. metric and rejection criterion

Validation/accreditation experiments show discrepancy
wrt computations. Can we exploit this info. in prediction?

Proposed approach to V&V

•Produce model (parameter) updates using validation/accr. ex-
periments.

•Then, estimate the implied change in the prediction from cal-
ibrated & updated models (val. metric). Decide on rejection.

The approach is general: Applications to stochastic (see
Webster’s talk), worst scenario (see Nobile’s talk).
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From validation to prediction

Qv

Qp

structure
Model

structure
Model

Θcal

experiment
validation

prediction

Rejection criterion: ∆Qp ≤ tol
Obs: ∆Qp estimates model’s predictive capability
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On the choice of validation experiments

Let Θ = [θ1, . . . , θn]. Sensitivity analysis should be used in the
prediction problem to identify the parameters θi with largest
influence in the prediction. Where to start?∥∥∥∥∂Qp

∂θi

∥∥∥∥ � 1
Qp is not sensitive to θi ; no need for validation

∥∥∥∥∂Qp

∂θi

∥∥∥∥ � 1
The prediction problem is too sensitive!! compu-
tation not reliable∥∥∥∥∂Qp

∂θi

∥∥∥∥ ≈ 1
Need to check with a validation experiment the
“uncertainty” in θi .

Recall talks: Helton (Sensitivity), Santner (Experiment design)
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SANDIA Static Frame Validation Problem

Reference: SANDIA Validation Challenge Workshop, 05/2006.
Frame reliability

y

x

2
3

1

A

C

D

B
4

q

Pm

Point x(cm) y(cm)
A 0 20
B 20 0
C 220 0
D 150 100

Bar # A(cm2) I (cm4)
1 16
2 16
3 16
4 80 5333

Quantity of interest: vertical displacement w(Pm) of the point
Pm.

In particular P(|w(Pm)| ≤ 3mm)
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Assumptions on the prediction problem

Joints (hinges) are perfect.

Supports in points A and D are perfectly rigid.

Geometric data are completely accurate

The load q is given by regulation

Linear elasticity theory acceptable for the bars’
deformation. In particular Kirchhoff bending theory can
be used fo bar #4.

Material properties (Young’s modulus) significantly
influence the target displacement (hence the reliability of
the frame)

Also, the material might be inhomogeneous.

Model structure: linear elasticity
Input data: elasticity coefficient
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The validation pyramid

Challenge problem provided calibration / validation / accreditation
experiments + experimental data (synthetic experiments).

Three cases were proposed, with increasing number of data.
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Calibration

simple tensile test on a bar of length
L = 20cm.

F

R

L
Quantities measured:

Young’s modulus E (L/2) on the
middle of the bar (by strain
gage)

Elongation δL of the bar

Sample # δL(mm) E(Lc/2) (GPa)
1 5.15e-02 13.26
2 5.35e-02 10.86
3 5.24e-02 14.77
4 5.51e-02 10.94
5 5.14e-02 11.05
6 5.38e-02 11.06
7 4.97e-02 11.97
8 5.41e-02 11.66
9 4.95e-02 12.09
10 5.42e-02 11.30
11 5.47e-02 10.98
12 5.74e-02 11.92
13 5.36e-02 11.12
14 5.42e-02 12.00
15 5.34e-02 10.98
16 5.60e-02 10.71
17 5.06e-02 10.91
18 4.99e-02 11.89
19 5.22e-02 11.43
20 5.57e-02 10.87
21 5.28e-02 11.75
22 5.10e-02 13.47
23 5.48e-02 11.44
24 5.35e-02 12.44
25 4.92e-02 12.13
26 5.51e-02 11.38
27 5.27e-02 10.75
28 5.14e-02 11.92
29 5.61e-02 10.82
30 5.56e-02 11.04
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Validation

Same as calibration on a longer bar of
length Lv = 80cm.

Goal: assess the effect of inhomo-
geneities in the material

Lv

Fv

Quantity measured:

Elongation δLv of the bar

Sample # δL(mm)

1 2.01e-01
2 2.06e-01

3 2.01e-01
4 2.08e-01

5 2.04e-01
6 2.01e-01
7 2.06e-01
8 2.11e-01
9 1.98e-01
10 2.08e-01
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Accreditation

More complex frame

y

x

B

A D

C1

3
4

2
P

Q

Quantity measured:

Vertical displacement of the
point Q

Sample # w(P)(mm)

1 -6.50e-01

2 -6.73e-01

Case#1 and #2
have only one
datum

Case #3 has two
measurements
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Models for elasticity coefficient

Let G (x , ω) be a Gaussian random field with zero mean, unit
variance and (stationary) covariance function

Cov [G ](x − y) = e
−

“
|x−y|

Lc

”α

(*)

Model for the material compliance C = 1/E

C(x , ω) = F−1 ◦ Φ (G (x , ω)) (**)

where Φ is the cumulative distribution of standard normal.

The function F determines the marginal distribution of C while the
parameter Lc defines the correlation length.

The model structure is given in (*) and (**).

The input data are the function F and the parameters Lc and α.
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Models for elasticity coefficient

We focused on the following models:

Marginal distribution: the function F is chosen to obtain 5
different distributions

4 parametric distributions: Uniform, Normal, Log-Normal,
Inverse Log-Normal

1 non parametric distribution: KDE (kernel density
function) with Gaussian kernel.

Covariance structure

fully correlated: α = 0, Lc > 0

partially correlated: α = 2, Lc > 0

perfectly uncorrelated: α > 0, Lc = 0

In total we have 15 models to calibrate and validate.
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Calibrating the marginal distribution

For the 4 parametric distributions the parameters are chosen
to fit the first two moments of the compliance data
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Calibrating the correlation length

To fit the correlation length we use both sets of calibration data:
pointwise compliance C(L/2) and elongation δL.
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Variability in the fitted data

We estimated the variability in the fitted data by a bootstrapping
procedure:

Reconstruct the joint pdf of C(L/2) and δL by a kernel density
estimate starting from the Nc calibration measurements.

Draw samples of size Nc from the reconstructed pdf and, for
each drawing, fit the parameters of the compliance model.

Repeat this procedure B = 1000 times and get distributions
for the fitted parameters.
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Variability in the fitted data
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The validation process

Due to the small amount of validation data we decided to
adopt a Bayesian approach. The validation process is as
follows

a) Using the calibrated model, the probability field of the
validation elongation Y (Θcal) is constructed, typically by
the Monte Carlo method;

b) Using the available validation measurements a Bayesian
update of the compliance model parameters Θup is
computed.

c) Using both the calibrated (Θcal) and updated (Θup)
model, the probability distribution of the quantity of
interest in the prediction problem is constructed. The
distance (validation metric) is based on a comparison
between the two cumulative distributions.
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Validation metric – notion of distance

We want to compute a failure probability FY (ȳ) = P(Y < ȳ). We
compare (at the prediction level) the two cumulative distributions
FY cal and FY up .

Definition (Horizontal distance)

Let F and G be two cumulative
distributions. Define

dε(F ,G ) := max
x∈Iε(G)

|F−1◦G (x)−x |

with Iε(G) ≡ {x ∈ R | ε
2
≤ G(x) ≤ 1− ε

2
}.
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1
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x

d = max { h(x) }

Definition (Rejection criterion)

Given a tolerance level tol we reject the model Y cal if

dε(FY up ,FY cal ) ≥ tol × 3mm
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Given a tolerance level tol we reject the model Y cal if
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Bayesian update of the calibrated model

The posterior distribution is defined as

p(Θ|Y) = cL(Θ|Y)p(Θ).

We have considered as an updated value Θup the maximum
likelihood estimator

Θup = argmax
Θ

p(Θ|Y).

In principle Θup can be computed numerically by solving
an optimization problem.

We have taken a shortcut: approximate p(Y |Θ) with a
Gaussian (which is a sound approximation). Then all
calculations can by done by hand.
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Validation results – fully correlated model
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Validation results – partially correlated model
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Validation results – computed distances

Case 1 Case 2 Case 3
(Nc ,Nv ) = (5, 2) (20, 4) (30, 10)

(a) Fully correlated model α = 0

Uniform 0.25 0.14 0.12
Normal 0.25 0.13 0.11
Inverse LN 0.25 0.17 0.12

(b) Partially correlated model α = 2

Uniform 0.02 0.04 0.025
Normal 0.03 0.035 0.025
Inverse LN 0.025 0.035 0.03

(c) Perfectly uncorrelated model Lc = 0

Effective model 0.07 0.08 0.09

Ratio of the horizontal distances and the critical prediction displacement.
Models are rejected is the normalized distance is larger than tol = 0.1.
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Accreditation

Similar to Validation.

We adopted also in this case a Bayesian approach.

Since the accreditation problem is more complex than the validation
one, the likelihood function is more difficult to construct. Also in
this case we have employed a Gaussian approximation.

Case 1 Case 2 Case 3
(Nc ,Na) = (5, 1) (20, 1) (30, 2)

(a) Partially correlated model α = 2

Uniform 0.015 0.028 0.037
Normal 0.015 0.028 0.037
Inverse LN 0.015 0.026 0.033

(b) Perfectly uncorrelated model Lc = 0

Effective model 0.072 0.072 0.1
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Prediction

The fully correlated model has been rejected in the validation process.

Both the partially correlated and the perfectly uncorrelated models have been
validated, for any choice of marginal distribution. They can then be used for
prediction.

The final prediction should include

the “distance” information coming from validation and
accreditation. It is a measure of the modeling error,
the variability on the input data measured by
bootstrapping.

How to include bootstrapping information: we want to compute the quantity

P(|w(Pm, Θ)| ≥ 3mm) =

Z
Ω̃

Z
Ω

1{|w(Pm,Θ(ω̃),ω)|≥3(mm)}dQ(ω)dP̃(ω̃)

We repeat the prediction computation B times, every time generating new calibration

data by bootstrapping and corresponding calibrated parameter Θcal .
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Prediction results – partially correlated model
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The cumulative distribution of the predicted quantity of interest obtained
by the calibrated model (blue), the bootstrapped model (green) and the
bounds. Partially correlated model with Normal marginal distribution.
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Prediction results – perfectly uncorrelated model

−3.6 −3.4 −3.2 −3 −2.8 −2.6 −2.4 −2.2 −2 −1.8

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w(P
m

)

F
(w

(P
m

))

Bootstrapped prediction values
Data case 1, using NORMAL, L

c
 = 0, 

 

 

Prediction
Bound
Bound
Boostrapped Prediction

Case 1: (Nc ,Nv ,Na) = (5, 2, 1)

−3.4 −3.2 −3 −2.8 −2.6 −2.4 −2.2

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w(P
m

)
F

(w
(P

m
))

Bootstrapped prediction values
Data case 3, using NORMAL, L

c
 = 0, 

 

 

Prediction
Bound
Bound
Boostrapped Prediction

Case 3: (Nc ,Nv ,Na) = (30, 10, 2)

The cumulative distribution of the predicted quantity of interest by the
calibrated (blue) and the bootstrapped model ( green ) for the perfectly

uncorrelated model.
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Prediction results – failure probability

Failure probability computed with the partially correlated model including:
bootstrapping

Case 1 Case 2 Case 3
(Nc ,Nv ,Na) = (5, 2, 1) (20, 4, 1) (30, 10, 2)

Uniform 2.0× 10−2 4.7× 10−5 5.6× 10−8

Normal 2.1× 10−2 5.8× 10−5 8.6× 10−8

Inverse LN 1.4× 10−2 4.6× 10−5 5.6× 10−8

bootstrapping + validation and accreditation distances

Case 1 Case 2 Case 3
(Nc ,Nv ,Na) = (5, 2, 1) (20, 4, 1) (30, 10, 2)

Uniform 0.18 1.8× 10−2 3.0× 10−3

Normal 0.19 2.1× 10−2 2.1× 10−3

Inverse LN 0.19 1.7× 10−2 1.4× 10−3
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Conclusions

We have presented a general framework for Verification and
Validation (V& V) in Computational Science

The main idea is to update the model using the validation data and
to measure the distance between calibrated and updated prediction.
The rejection criterion is defined on the prediction level directly.

The most crucial step is how to design the validation pyramid:
calibration/validation/accreditation experiments, metrics and
tolerances for rejection.

We have illustrated and implemented on the SANDIA Challenge
Validation Problem the steps for model validation. The link
between validation experiments and prediction has been achieved
via Bayesian updating.

The result are encouraging; the bad models have been rejected, as
expected.

There are still a lot of interesting mathematical questions to be
investigated. Space for research .....


	V&V framework
	Introduction
	Basic notions
	A framework for V&V
	Design of validation/accreditation experiments

	SANDIA Static Frame Validation Problem
	Definition of the problem

	Solution procedure
	Definition of the mathematical model
	Calibration
	Validation
	Accreditation
	Prediction

	Conclusions
	Conclusions


