Reduced-Order Models Over Parameter Ranges

Jeff Borggaard

Interdisciplinary Center for Applied Mathematics
Virginia Tech

24 July 2007

Jeff Borggaard Sandia CSRI Math. Methods for Verification & Validation



ROM in V& V

@ Reduced-order models (ROMs) are an enabling tool in control
and optimization.

@ A priori and a posteriori error estimates need more
development.

@ Need ROMs that represent solutions over a wide range of
parameter space.

@ Not just the parameter samples used to produce the basis.
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POD/PID

Proper Orthogonal Decomposition

Standard ROM for PDEs

o Find a good low-dimensional basis {¢;}7_;

@ Represent the solution as
r
w(x, t) =~ w'(x,t) = Zqﬁj(x)aj(t)
j=1

o Find a dynamical system for coefficients {a;}_,
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POD/PID

Proper Orthogonal Decomposition

Proper Orthogonal Decomposition

Given an collection of simulations {w(x, t; qx)}, find ¢ that solves

2
- ; d
3 6ll=1 K|T| T;”W( t:qi) — ¢(-)a(t; qu)||” dt

¢ minimizes the error between the projection and the data.

The reduced-basis {¢;} needs to be suitable over

o all time

@ all relevant parameters

A\
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POD/PID

PID: Principal Interval Decomposition

Simultaneously find
@ Bases and relevant time intervals
@ Bases and relevant parameter ranges

@ Combination

Idea: We can impose extra conditions
/ w(-, t) — ¢(-)a(t)|? dt<e/ |w(x, t)|| dt

and in practice

[ = oo de<e [ i P

i i
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POD/PID

PID: Features/Limitations

@ Can realize prescribed approximation properties of the basis.
@ Replacing a by a
a="f(at;q)
can realize prescribed error tolerances of the model at the
snapshot parameters.
@ The number of intervals is determined by the tolerance e.

@ Requires a large number of simulations to obtain good
resolution of the intervals (that would allow fewer intervals to
achieve the same tolerance)
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POD/PID
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Parametric Uncertainty by Sensitivity Analysis

Uncertainty Estimates

Given 5
w
w(x, t; and —w(x,t;
(x,t: q) 3 (x,t;: q)
we can estimate

ow

w(x,:3) - wix, t:q)| Z Aq ‘ o

(x.t:0)

for g € (9 — Aq,q+ Ag).
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Parametric Uncertainty by Sensitivity Analysis

Example

w/ E. Turgeon and D. Pelletier

Experiments and Computation, both with Error Bars
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Parametric Uncertainty by Sensitivity Analysis

Parameter Dependence in ROMs

w'(x,t;q) = Z¢1anjtq)

j=1
Sensitivity of the POD basis may lead to a number of applications

@ Similar parametric interval analysis

r 6 . 6 '
w'(x,£:g) = w'(x, t;q)| < Aq|) %(X; 9)aj(t: q) + ¢;(x; q)a_z‘
j=1

@ Augment the reduced-basis for better representation away
from snapshot parameters

0di "
span{{¢j}f:1,{6i;]}. 1}.
J:
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