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Physical Problems
Large scale thermal/fluid systems dominated by turbulence transport 
(strongly non-linear PDEs) and multiscale phenomena (combustion, 
multiphase interfaces, shocks, etc.)

Flow and heat transfer
 in a jet engine

Dispersion of complex 
biological agents

Heat transfer on ablating
thermal protection systems
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Verification
Formulate (physics-based) manufactured solutions that include 
multiple physical processes in realistic conditions

Objective 1: algorithmic correctness - order of accuracy

Objective II: algorithm appropriateness - robustness and physical 
“fidelity” (parameter sensitivity) 

Example: L. Shunn (Sandia summer intern) with P. Knupp - work on 
compressible, rective flows with complex, non-linear (tabulated) 
equation of state.
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Validation
Perform accreditation tests for physical models based in close 
interactions with experimentalists

RANS  LES

Example: interface 
between two subsystems 
characterized by different 
turbulence modeling 
approaches



Magnetic Resonance 
Velocimetry

Particle Image
Velocimetry

Validation
Multiple Experimental
Facilities/Diagnostics

Large Experimental Datasets & 
Multiple Physical Models

Experiment
Experiment

RANSRANS

LES LES

Streamwise Velocity



Uncertainty Quantification
Rather new activities, not originally part of the ASC program.

For our problems



Uncertainty Quantification
Rather new activities, not originally part of the ASC program.

Very expensive deterministic solution evaluations
• Naive MC is unfeasible 

Very complex and extensive application codes
• Intrusive methods are not attractive

Potentially large uncertainty in the parameters
• Sensitivity Derivative (Perturbation Method) can be inaccurate

Very large number of uncertain parameters
• PC is too expensive

For our problems



Uncertainty Quantification
Current focus is on non-intrusive approaches 

• Effect of quadrature rules in high order stochastic colocation        
(P. Constantine - Sandia summer intern)

• Pade-Legendre colocation for strongly non-linear problems with 
discontinuities in probability space (T. Chantrasmi)

• Combined Adjoint/Polynomial Chaos method for turbulent flow 
simulations (Q. Wang)



Stochastic Colocation
Mean and variance are “just” integrals: we can use quadrature rules to compute 
them accurately. Evaluate choices of 1D integration rule and multi-dimensional 
extensions

Turbine blade cooling passages



Stochastic Colocation

Wall Temperature Variance

Clenshaw-Curtis + Smolyak GridGauss + Tensor Product Grid

Flow xExample:  Turbulent flow around an array of 
heated cylinders with uncertain inlet velocity 
and wall heat flux



Discontinuities in Probability Space

Possible remedies
Enrichment techniques
Local (zonal) representations
Pade-Legendre approximates

develop a method to handle functions with discontinuities in the 
probability space as well as physical domain but smooth away 
from the discontinuities. Discontinuity in probability space not 
uncommon for non-linear systems: change of system behavior, 
transitions, flow separation, etc.

• Does not require a-priori knowledge of the discontinuities
• Works with multiple spatial and stochastic dimensions
• Wants a non-intrusive method
• Global polynomial/Spectral representation of Non-smooth functions 

is not straightforward (Gibbs phenomena)
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Pade-Legendre Polynomial Chaos Approach
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MC

PC (4) +
Sawtooth

PC (4)

PL (2)

Example
Shock tube problem with 
uncertain equation of state



What are the expectations?

Beyond the simplistic view:  “add error bars to the computational results”

Objective assessment of the predictive capabilities of the computational 
models: validation metrics and confidence bounds (Oberkampf & 
Barone, 2006), uncertainty propagation, data assimilation (Ghanem & 
Doostan, 2006)

Identify areas of model inadequacy in the physical models and develop 
“modeling-error” estimates. 
• Should validation be limited to comparing the quantity of interest? 
• What about modeling error cancelation? 
• Does the model works for the right reasons?



Perspectives
Our research focus has been traditionally on pursuing improving the 
physical models - typically increasing the fidelity by adding more and 
more “scales”

UQ of an existing model is not considered as rewarding as the 
development of a brand-new physical model (cultural problem)
and the research agenda of many funding agency (NASA,  AirForce, 
DARPA) has a limited focus on UQ 

Need to show the advantages of doing UQ beyond the decision making

Opportunity: develop model improvements using ideas originated from 
UQ methodologies. One simple idea is to substitute “deterministic-
type” hypothesis with probabilistic statements or theoretical bounds 
(interval analysis)



Education
Need to bring together computational mathematics, engineering, 
physics and statistics educational curriculum

Stanford’s Institute for Computational Mathematical Engineering 
(http://icme.stanford.edu) has been designed around this idea. Two 
ICME PhD candidate are now directly involved in UQ activities within 
Stanford’s Alliance Center

Verification and Validation awareness starts early in the CFD classes but 
there is much more than is required. 

We do not formally offer an UQ-methodology class but we are 
organizing one in collaboration with Applied Math Dept. (hopefully 
starting next year)

http://icme.stanford.edu
http://icme.stanford.edu
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Combined Adjoint
Polynomial Chaos Analysis



Goal: reduce the number of uncertain parameters
• Evaluate the ones that contribute the most to the output 

uncertainty

Step 1: Sensitivity analysis:  use Adjoints

Step 2: Perform PC on
• Parameters that have considerable sensitivity
• Parameters that have large uncertainty

Step 3: Combine the results

Combined Adjoint/PC Analysis
Observation



Application
Vortex shedding around cylinder (Re=100)

Uncertain inflow conditions (non uniform inflow) - 
modeled using 10 parameters - KL expansion

Objective: evaluate the uncertainty in the time-averaged 
pressure drag coefficient 



Combined Adjoint/PC Analysis



Combined Adjoint/PC Analysis

CENTER FOR INTEGRATED TURBULENCE SIMULATIONS, STANFORD UNIVERSITY
Advanced Simulation and Computing Principal Investigators Meeting, February 2007

Adaptive Uncertainty Analysis using
Adjoint Method and Polynomial Chaos

For this reason, an ideal method to solve the challenge of large number of
uncertain parameters with potentially large magnitude would be combining the
accuracy of polynomial chaos with the efficiency of adjoint method.

Adaptive uncertainty quantification:

(1) Use the adjoint method to compute the distributions of quantities of interest.
The sensitivity of the quantities of interest to all uncertain parameters is a by-
product of the adjoint solution.

(2) From all input parameters, select those whose uncertainty have most influence
on the quantities of interest or are known to have the largest variability, and
perform a polynomial chaos analysis only for these small number of parameters.

(3) Update distribution of quantities of interest based on polynomial chaos analysis.

Reference: Q.Wang, T.Chantrasmi, G.Iacarrino and P.Moin, Adaptive uncertainty quantification using

adjoint method and polynomial chaos. http://www.stanford.edu/~qiqi/research/4_Wang_TFSA2007.pdf

Monte Carlo method for solving
time dependent adjoint equation

Problem with backward time solution technique: In time dependent problems, the
adjoint equation runs backward in time. Solving adjoint equation to a nonlinear
problem using traditional numerical techniques requires storage of the time

history of the original solution, or repetitively re-solve the original problem.

Forward time Monte Carlo method: Using ideas from Monte Carlo linear solver, we
developed a method of solving the backward time adjoint equation using forward
time algorithm. In this algorithm, an approximate solution of the adjoint equation
is computed at the same time as the original problem. No storage of time
history or resolving the original problem is required.

Reference: Q.Wang, D.Gleich, A.Saberi and P.Moin, A Monte Carlo Method for Solving Unsteady Adjoint

Equations. To appear in Journal of Computational Physics.

Figure 1 Snapshot of streamwise velocity of a unsteady laminar flow field over a cylinder. Re = 100. Figure 2 Snapshot
of vertical velocity.  Figure 3 Snapshot of adjoint field of streamwise velocity. The objective function for the adjoint

equation is the pressure drag of the cylinder. Figure 4 Snapshot of adjoint field of vertical velocity. Figure 5 Probability

density function of pressure drag of the cylinder obtained by adjoint method alone. The sources of uncertainty is a

random field around the inlet at initial condition. Figure 6 First 10 Karhunen-Loeve modes of the uncertain around inlet

at initial condition. Figure 7 Sensitivity of the objective function with respect to the first 10 Karhunen-Loeve modes.
Figure 8 Probability density function of the pressure drag obtained using the adaptive uncertainty quantification method

(red curve), compared with the probability function obtained by adjoint method alone (blue curve). Figure 9 Another

case when the magnitude of uncertainty is 10 times larger. Probability density function of the pressure drag obtained

using the adaptive uncertainty quantification method (red curve), compared with the probability function obtained by

adjoint method alone (blue curve). Figure 10 The response function with respect to first and third mode of Karhunen-

Loeve expansion, in the large magnitude of uncertainty case. Obtained by using non-intrusive polynomial chaos (chaos
collocation) method.

Qiqi Wang, Tonkid Chantrasmi, Gianluca Iaccarino, Parviz Moin

2

6 7

1

K-L terms

S
e
n
s
it
iv

it
y

Pressure drag

coefficient

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y
 f
u
n
c
ti
o
n

43

5

1098

ConstantExponentialComputational Cost

First orderSpectralAccuracy

Adjoint methodPolynomial chaos

Combining the accuracy of the
polynomial chaos approach with
the efficiency of adjoint methods

Challenge: large number of uncertain parameters, potentially large magnitude

of uncertainty. | Turbulent combustion and hypersonic re-entry flows are two
examples of problems which involve a very large number (100s or 1000s) of
uncertain parameters arising from chemical reaction modeling or turbulence
modeling. The magnitude of these uncertainties can be potentially large.

Adjoint method vs. polynomial chaos: | Polynomial chaos (stochastic Galerkin
method) is a very popular method in uncertainty quantification. However, when the

number of random parameters is large, the computational cost grows exponentially.
In contrast, the computational cost of adjoint method is constant with respect to
number of uncertain parameters, but its accuracy is inferior to polynomial chaos
method especially when the magnitude of uncertainty is large.
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perform a polynomial chaos analysis only for these small number of parameters.

(3) Update distribution of quantities of interest based on polynomial chaos analysis.

Reference: Q.Wang, T.Chantrasmi, G.Iacarrino and P.Moin, Adaptive uncertainty quantification using

adjoint method and polynomial chaos. http://www.stanford.edu/~qiqi/research/4_Wang_TFSA2007.pdf

Monte Carlo method for solving
time dependent adjoint equation

Problem with backward time solution technique: In time dependent problems, the
adjoint equation runs backward in time. Solving adjoint equation to a nonlinear
problem using traditional numerical techniques requires storage of the time

history of the original solution, or repetitively re-solve the original problem.

Forward time Monte Carlo method: Using ideas from Monte Carlo linear solver, we
developed a method of solving the backward time adjoint equation using forward
time algorithm. In this algorithm, an approximate solution of the adjoint equation
is computed at the same time as the original problem. No storage of time
history or resolving the original problem is required.

Reference: Q.Wang, D.Gleich, A.Saberi and P.Moin, A Monte Carlo Method for Solving Unsteady Adjoint

Equations. To appear in Journal of Computational Physics.

Figure 1 Snapshot of streamwise velocity of a unsteady laminar flow field over a cylinder. Re = 100. Figure 2 Snapshot
of vertical velocity.  Figure 3 Snapshot of adjoint field of streamwise velocity. The objective function for the adjoint

equation is the pressure drag of the cylinder. Figure 4 Snapshot of adjoint field of vertical velocity. Figure 5 Probability

density function of pressure drag of the cylinder obtained by adjoint method alone. The sources of uncertainty is a

random field around the inlet at initial condition. Figure 6 First 10 Karhunen-Loeve modes of the uncertain around inlet

at initial condition. Figure 7 Sensitivity of the objective function with respect to the first 10 Karhunen-Loeve modes.
Figure 8 Probability density function of the pressure drag obtained using the adaptive uncertainty quantification method

(red curve), compared with the probability function obtained by adjoint method alone (blue curve). Figure 9 Another

case when the magnitude of uncertainty is 10 times larger. Probability density function of the pressure drag obtained

using the adaptive uncertainty quantification method (red curve), compared with the probability function obtained by

adjoint method alone (blue curve). Figure 10 The response function with respect to first and third mode of Karhunen-

Loeve expansion, in the large magnitude of uncertainty case. Obtained by using non-intrusive polynomial chaos (chaos
collocation) method.

Qiqi Wang, Tonkid Chantrasmi, Gianluca Iaccarino, Parviz Moin

2

6 7

1

K-L terms

S
e
n
s
it
iv

it
y

Pressure drag

coefficient

p
ro

b
a
b
ili

ty
 d

e
n
s
it
y
 f
u
n
c
ti
o
n

43

5

1098

ConstantExponentialComputational Cost

First orderSpectralAccuracy

Adjoint methodPolynomial chaos

Combining the accuracy of the
polynomial chaos approach with
the efficiency of adjoint methods
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Combining the accuracy of the
polynomial chaos approach with
the efficiency of adjoint methods

Challenge: large number of uncertain parameters, potentially large magnitude

of uncertainty. | Turbulent combustion and hypersonic re-entry flows are two
examples of problems which involve a very large number (100s or 1000s) of
uncertain parameters arising from chemical reaction modeling or turbulence
modeling. The magnitude of these uncertainties can be potentially large.

Adjoint method vs. polynomial chaos: | Polynomial chaos (stochastic Galerkin
method) is a very popular method in uncertainty quantification. However, when the

number of random parameters is large, the computational cost grows exponentially.
In contrast, the computational cost of adjoint method is constant with respect to
number of uncertain parameters, but its accuracy is inferior to polynomial chaos
method especially when the magnitude of uncertainty is large.

Uncertainty in the drag of a cylinder in 
response to variability in the inlet 
conditions (10 parameters)

Adjoint Solution Polynomial Chaos

Downselect to three
most important parameters 

“Small”
Uncertainty



Combined Adjoint/PC Analysis
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adjoint method alone (blue curve). Figure 10 The response function with respect to first and third mode of Karhunen-

Loeve expansion, in the large magnitude of uncertainty case. Obtained by using non-intrusive polynomial chaos (chaos
collocation) method.
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Combining the accuracy of the
polynomial chaos approach with
the efficiency of adjoint methods

Challenge: large number of uncertain parameters, potentially large magnitude

of uncertainty. | Turbulent combustion and hypersonic re-entry flows are two
examples of problems which involve a very large number (100s or 1000s) of
uncertain parameters arising from chemical reaction modeling or turbulence
modeling. The magnitude of these uncertainties can be potentially large.

Adjoint method vs. polynomial chaos: | Polynomial chaos (stochastic Galerkin
method) is a very popular method in uncertainty quantification. However, when the

number of random parameters is large, the computational cost grows exponentially.
In contrast, the computational cost of adjoint method is constant with respect to
number of uncertain parameters, but its accuracy is inferior to polynomial chaos
method especially when the magnitude of uncertainty is large.

CENTER FOR INTEGRATED TURBULENCE SIMULATIONS, STANFORD UNIVERSITY
Advanced Simulation and Computing Principal Investigators Meeting, February 2007

Adaptive Uncertainty Analysis using
Adjoint Method and Polynomial Chaos

For this reason, an ideal method to solve the challenge of large number of
uncertain parameters with potentially large magnitude would be combining the
accuracy of polynomial chaos with the efficiency of adjoint method.

Adaptive uncertainty quantification:

(1) Use the adjoint method to compute the distributions of quantities of interest.
The sensitivity of the quantities of interest to all uncertain parameters is a by-
product of the adjoint solution.

(2) From all input parameters, select those whose uncertainty have most influence
on the quantities of interest or are known to have the largest variability, and
perform a polynomial chaos analysis only for these small number of parameters.

(3) Update distribution of quantities of interest based on polynomial chaos analysis.

Reference: Q.Wang, T.Chantrasmi, G.Iacarrino and P.Moin, Adaptive uncertainty quantification using

adjoint method and polynomial chaos. http://www.stanford.edu/~qiqi/research/4_Wang_TFSA2007.pdf

Monte Carlo method for solving
time dependent adjoint equation

Problem with backward time solution technique: In time dependent problems, the
adjoint equation runs backward in time. Solving adjoint equation to a nonlinear
problem using traditional numerical techniques requires storage of the time

history of the original solution, or repetitively re-solve the original problem.

Forward time Monte Carlo method: Using ideas from Monte Carlo linear solver, we
developed a method of solving the backward time adjoint equation using forward
time algorithm. In this algorithm, an approximate solution of the adjoint equation
is computed at the same time as the original problem. No storage of time
history or resolving the original problem is required.

Reference: Q.Wang, D.Gleich, A.Saberi and P.Moin, A Monte Carlo Method for Solving Unsteady Adjoint

Equations. To appear in Journal of Computational Physics.

Figure 1 Snapshot of streamwise velocity of a unsteady laminar flow field over a cylinder. Re = 100. Figure 2 Snapshot
of vertical velocity.  Figure 3 Snapshot of adjoint field of streamwise velocity. The objective function for the adjoint

equation is the pressure drag of the cylinder. Figure 4 Snapshot of adjoint field of vertical velocity. Figure 5 Probability

density function of pressure drag of the cylinder obtained by adjoint method alone. The sources of uncertainty is a

random field around the inlet at initial condition. Figure 6 First 10 Karhunen-Loeve modes of the uncertain around inlet

at initial condition. Figure 7 Sensitivity of the objective function with respect to the first 10 Karhunen-Loeve modes.
Figure 8 Probability density function of the pressure drag obtained using the adaptive uncertainty quantification method

(red curve), compared with the probability function obtained by adjoint method alone (blue curve). Figure 9 Another

case when the magnitude of uncertainty is 10 times larger. Probability density function of the pressure drag obtained

using the adaptive uncertainty quantification method (red curve), compared with the probability function obtained by

adjoint method alone (blue curve). Figure 10 The response function with respect to first and third mode of Karhunen-

Loeve expansion, in the large magnitude of uncertainty case. Obtained by using non-intrusive polynomial chaos (chaos
collocation) method.
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Combining the accuracy of the
polynomial chaos approach with
the efficiency of adjoint methods

Challenge: large number of uncertain parameters, potentially large magnitude

of uncertainty. | Turbulent combustion and hypersonic re-entry flows are two
examples of problems which involve a very large number (100s or 1000s) of
uncertain parameters arising from chemical reaction modeling or turbulence
modeling. The magnitude of these uncertainties can be potentially large.

Adjoint method vs. polynomial chaos: | Polynomial chaos (stochastic Galerkin
method) is a very popular method in uncertainty quantification. However, when the

number of random parameters is large, the computational cost grows exponentially.
In contrast, the computational cost of adjoint method is constant with respect to
number of uncertain parameters, but its accuracy is inferior to polynomial chaos
method especially when the magnitude of uncertainty is large.

Uncertainty in the drag of a cylinder in 
response to variability in the inlet 
conditions (10 parameters)

CENTER FOR INTEGRATED TURBULENCE SIMULATIONS, STANFORD UNIVERSITY
Advanced Simulation and Computing Principal Investigators Meeting, February 2007

Adaptive Uncertainty Analysis using
Adjoint Method and Polynomial Chaos

For this reason, an ideal method to solve the challenge of large number of
uncertain parameters with potentially large magnitude would be combining the
accuracy of polynomial chaos with the efficiency of adjoint method.

Adaptive uncertainty quantification:

(1) Use the adjoint method to compute the distributions of quantities of interest.
The sensitivity of the quantities of interest to all uncertain parameters is a by-
product of the adjoint solution.

(2) From all input parameters, select those whose uncertainty have most influence
on the quantities of interest or are known to have the largest variability, and
perform a polynomial chaos analysis only for these small number of parameters.

(3) Update distribution of quantities of interest based on polynomial chaos analysis.

Reference: Q.Wang, T.Chantrasmi, G.Iacarrino and P.Moin, Adaptive uncertainty quantification using

adjoint method and polynomial chaos. http://www.stanford.edu/~qiqi/research/4_Wang_TFSA2007.pdf

Monte Carlo method for solving
time dependent adjoint equation

Problem with backward time solution technique: In time dependent problems, the
adjoint equation runs backward in time. Solving adjoint equation to a nonlinear
problem using traditional numerical techniques requires storage of the time

history of the original solution, or repetitively re-solve the original problem.

Forward time Monte Carlo method: Using ideas from Monte Carlo linear solver, we
developed a method of solving the backward time adjoint equation using forward
time algorithm. In this algorithm, an approximate solution of the adjoint equation
is computed at the same time as the original problem. No storage of time
history or resolving the original problem is required.

Reference: Q.Wang, D.Gleich, A.Saberi and P.Moin, A Monte Carlo Method for Solving Unsteady Adjoint

Equations. To appear in Journal of Computational Physics.

Figure 1 Snapshot of streamwise velocity of a unsteady laminar flow field over a cylinder. Re = 100. Figure 2 Snapshot
of vertical velocity.  Figure 3 Snapshot of adjoint field of streamwise velocity. The objective function for the adjoint

equation is the pressure drag of the cylinder. Figure 4 Snapshot of adjoint field of vertical velocity. Figure 5 Probability

density function of pressure drag of the cylinder obtained by adjoint method alone. The sources of uncertainty is a

random field around the inlet at initial condition. Figure 6 First 10 Karhunen-Loeve modes of the uncertain around inlet

at initial condition. Figure 7 Sensitivity of the objective function with respect to the first 10 Karhunen-Loeve modes.
Figure 8 Probability density function of the pressure drag obtained using the adaptive uncertainty quantification method

(red curve), compared with the probability function obtained by adjoint method alone (blue curve). Figure 9 Another

case when the magnitude of uncertainty is 10 times larger. Probability density function of the pressure drag obtained

using the adaptive uncertainty quantification method (red curve), compared with the probability function obtained by

adjoint method alone (blue curve). Figure 10 The response function with respect to first and third mode of Karhunen-

Loeve expansion, in the large magnitude of uncertainty case. Obtained by using non-intrusive polynomial chaos (chaos
collocation) method.
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Combining the accuracy of the
polynomial chaos approach with
the efficiency of adjoint methods

Challenge: large number of uncertain parameters, potentially large magnitude

of uncertainty. | Turbulent combustion and hypersonic re-entry flows are two
examples of problems which involve a very large number (100s or 1000s) of
uncertain parameters arising from chemical reaction modeling or turbulence
modeling. The magnitude of these uncertainties can be potentially large.

Adjoint method vs. polynomial chaos: | Polynomial chaos (stochastic Galerkin
method) is a very popular method in uncertainty quantification. However, when the

number of random parameters is large, the computational cost grows exponentially.
In contrast, the computational cost of adjoint method is constant with respect to
number of uncertain parameters, but its accuracy is inferior to polynomial chaos
method especially when the magnitude of uncertainty is large.

Adjoint Solution Polynomial Chaos

Downselect to three
most important parameters 

“Large”
Uncertainty



On-going Work

• Completion of MC sampling to verify the accuracy of the 
combined Adjoint/PC expansion

• Extensions to three-dimensional turbulent flows
• Development of efficient methods to solve the adjoint system for 

unsteady problems

Turbulent Reactive Flow in the 
Combustion Chamber



Uncertainty Propagation for 
Strongly Non Linear Problems



Discontinuity in Physical Space
Burgers Eq. with “Noisy” initial data 



Discontinuity in Probability Space
Shock-Tube Problem with uncertain gas properties



Discontinuity in Probability Space

“Classical” Polynomial Chaos Approach



Discontinuity in Probability Space

“Classical” Polynomial Chaos Approach

• Global polynomial/Spectral representation of Non-smooth 
functions is not straightforward (Gibbs phenomena)

• Discontinuity in probability space not uncommon for non-linear 
systems: change of system behavior

Possible remedies

Enrichment techniques
Local (zonal) representations
Pade-Legendre approximates



“Enriched” Polynomial Chaos Approach

Saw-tooth



LMQP
Q
PuR ,  degrees of spolynomial  ,         where)( =

0)(    :]1,1[

 deg of polynomial         where0,

>−∈∀

<=−

xQx

NQuP ϕϕ

Pade-Legendre Polynomial Chaos Approach

u Q uQ ~ P
Which is much
smoother than u



MC

PC (4) +
Sawtooth

PC (4)

PL (2)

Discontinuity in Probability Space



On-going Work
• Extension of the PL-expansions in multiple stochastic and 

physical dimensions
• Robust choice of the denominator polynomial order  

Turbine Blades Heat Transfer 


