Experiences & Expectations
Stanford ASC Center .\

e \
ASC

Gianluca laccarino
Center for Turbulence Research
Mechanical Engineering Dept.
Stanford University

Sandia Workshop on MMVYV - [4-]6 August 2007



Physical Problems

Large scale thermal/fluid systems dominated by turbulence transport
(strongly non-linear PDEs) and multiscale phenomena (combustion,
multiphase interfaces, shocks, etc.)

Flow and heat transfer

in a jet engine SoH Y . N Heat transfer on ablating
et 1 thermal protection systems

Dispersion of complex
biological agents




Verification

Formulate (physics-based) manufactured solutions that include
multiple physical processes in realistic conditions

Obijective |:algorithmic correctness - order of accuracy

Obijective ll: algorithm appropriateness - robustness and physical
“fidelity” (parameter sensitivity)

Example: L. Shunn (Sandia summer intern) with P. Knupp - work on
compressible, rective flows with complex, non-linear (tabulated)

equation of state.
— TI, polynomial table

pointwise, piecewise linear table
fine grid

Fuel-rich 1D equation of state

Fuel-lean

outlet velocity

mixture fraction mixture fraction




Validation

Perform accreditation tests for physical models based in close
interactions with experimentalists
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Example: interface
between two subsystems
characterized by different
turbulence modeling
approaches




Validation

Multiple Experimental
Facilities/Diagnostics

Large Experimental Datasets &
Multiple Physical Models
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Uncertainty Quantification

Rather new activities, not originally part of the ASC program.

For our problems




Uncertainty Quantification

Rather new activities, not originally part of the ASC program.

For our problems

Very expensive deterministic solution evaluations
* Naive MC is unfeasible

Very complex and extensive application codes
* Intrusive methods are not attractive

Potentially large uncertainty in the parameters
* Sensitivity Derivative (Perturbation Method) can be inaccurate

Very large number of uncertain parameters
e PC is too expensive




Uncertainty Quantification

Current focus is on non-intrusive approaches

* Effect of quadrature rules in high order stochastic colocation
(P. Constantine - Sandia summer intern)

* Pade-Legendre colocation for strongly non-linear problems with
discontinuities in probability space (T. Chantrasmi)

* Combined Adjoint/Polynomial Chaos method for turbulent flow
simulations (Q.Wang)




Stochastic Colocation

Mean and variance are “just” integrals: we can use quadrature rules to compute
them accurately. Evaluate choices of |D integration rule and multi-dimensional
extensions

Turbine blade cooling passages




Stochastic Colocation

Example: Turbulent flow around an array of Flow
heated cylinders with uncertain inlet velocity
and wall heat flux

Wall Temperature Variance
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Discontinuities in Probability Space

develop a method to handle functions with discontinuities in the
probability space as well as physical domain but smooth away
from the discontinuities. Discontinuity in probability space not
uncommon for non-linear systems: change of system behavior,
transitions, flow separation, etc.

e Does not require a-priori knowledge of the discontinuities

e Works with multiple spatial and stochastic dimensions

e \Wants a non-intrusive method

* Global polynomial/Spectral representation of Non-smooth functions
is not straightforward (Gibbs phenomena)

Possible remedies
Enrichment techniques

Local (zonal) representations
Pade-Legendre approximates




Pade-Legendre Polynomial Chaos Approach
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R(u)=§ where P,0O polynomials of degrees M, L

<P — Qu,q0> =0 where ¢ polynomialof deg< N
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Example

Shock tube problem with
uncertain equation of state
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What are the expectations?

Beyond the simplistic view: “add error bars to the computational results”

Obijective assessment of the predictive capabilities of the computational
models: validation metrics and confidence bounds (Oberkampf &
Barone, 2006), uncertainty propagation, data assimilation (Ghanem &

Doostan, 2006)

|dentify areas of model inadequacy in the physical models and develop
“modeling-error” estimates.

* Should validation be limited to comparing the quantity of interest?

* What about modeling error cancelation?

* Does the model works for the right reasons!?




Perspectives

Our research focus has been traditionally on pursuing improving the
physical models - typically increasing the fidelity by adding more and
more “scales”

UQ of an existing model is not considered as rewarding as the
development of a brand-new physical model (cultural problem)

and the research agenda of many funding agency (NASA, AirForce,
DARPA) has a limited focus on UQ

Need to show the advantages of doing UQ beyond the decision making

Opportunity: develop model improvements using ideas originated from
UQ methodologies. One simple idea is to substitute “deterministic-
type” hypothesis with probabilistic statements or theoretical bounds
(interval analysis)




Education

Need to bring together computational mathematics, engineering,
physics and statistics educational curriculum

Stanford’s Institute for Computational Mathematical Engineering
(http://icme.stanford.edu) has been designed around this idea. Two
ICME PhD candidate are now directly involved in UQ activities within
Stanford’s Alliance Center

Verification and Validation awareness starts early in the CFD classes but
there is much more than is required.

We do not formally offer an UQ-methodology class but we are
organizing one in collaboration with Applied Math Dept. (hopefully
starting next year)



http://icme.stanford.edu
http://icme.stanford.edu
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Combined Adjoint

Polynomial Chaos Analysis




Combined Adjoint/PC Analysis

Observation

Polynomial chaos

Adjoint method

Accuracy

Spectra

First order

Computational Cost

Exponential

Constant

Goal: reduce the number of uncertain parameters
e Evaluate the ones that contribute the most to the output

uncertainty

Step |:Sensitivity analysis: use Adjoints

Step 2: Perform PC on

* Parameters that have considerable sensitivity

* Parameters that have large uncertainty

Step 3: Combine the results




Application

Vortex shedding around cylinder (Re=100)

Uncertain inflow conditions (non uniform inflow) -
modeled using |10 parameters - KL expansion

Obijective: evaluate the uncertainty in the time-averaged
pressure drag coefficient




Combined Adjoint/PC Analysis

Uncertainty of objective function based on adjoint analysis:

FoF+ 2 50y 2, - 50)
Gl d&
where FO _ F(® ... £©)

Uncertainty of objective function based on PC analysis:
F = FEF&}(EP"*%)
where 5i--"*:5; are the important parameters determined by

adjoint analysis.
Combined result:
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Combined Adjoint/PC Analysis

Uncertainty in the drag of a cylinder in
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Combined Adjoint/PC Analysis

Uncertainty in the drag of a cylinder in
response to variability in the inlet
conditions (10 parameters)
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On-going Work

Completion of MC sampling to verify the accuracy of the
combined Adjoint/PC expansion

Extensions to three-dimensional turbulent flows

Development of efficient methods to solve the adjoint system for
unsteady problems

Turbulent Reactive Flow in the
Combustion Chamber




Uncertainty Propagation for

Strongly Non Linear Problems




Discontinuity in Physical Space
Burgers Eq. with “Noisy” initial data

Jo errar bar via 2nd order stochastic galerkin
upper 30 bound

loweer 35 bound




Discontinuity in Probability Space

Shock-Tube Problem with uncertain gas properties
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Discontinuity in Probability Space

“Classical” Polynomial Chaos Approach
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Discontinuity in Probability Space

“Classical” Polynomial Chaos Approach

* Global polynomial/Spectral representation of Non-smooth
functions is not straightforward (Gibbs phenomena)

e Discontinuity in probability space not uncommon for non-linear
systems: change of system behavior

Possible remedies

Enrichment techniques
Local (zonal) representations
Pade-Legendre approximates




“Enriched” Polynomial Chaos Approach
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Pade-Legendre Polynomial Chaos Approach
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Discontinuity in Probability Space
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4 4
w10 Hth-order PC o+ sawtooth: M=10000 %10 Fade-Lagrange with L=2:

PC (4) +
Sawtooth




On-going Work

* Extension of the PL-expansions in multiple stochastic and
physical dimensions
* Robust choice of the denominator polynomial order

Turbine Blades Heat Transfer




