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Characteristics of the Problem

I Describe structure of nucleus
I Find lowest (10’s or 100’s) eigenpairs of large sparse

symmetric Hamiltonian matrix H
I Largest production run so far: 16O : 30 converged

eigenvalues
I LARGE: ∼ 2 · 109 rows/columns
I SPARSE: ∼ 8 · 1011 nonzeros
I Much larger matrices in the wings, waiting on computers

with more main memory

I Rule of thumb: number of nonzeros ∈ O(n1.5)

I Sparsity is defined by combinatorics (from physics), but
has no “nice” pattern



Challenges, Solved and Unsolved

I We have:
I 2-D matrix distribution scheme with low communication

needs for matvec
I Partition of rows/columns of H to keep matvec

load-balanced
I System for computing sparsity of H

I We would like:
I An alternate partitioning that preserves dense blocks of H
I Reordering of rows/columns per processor to improve

matrix storage and/or matvec time



Sparsity Structure for 6Li



Parallel Eigenvalue Computation

I Solved by Lanczos iteration: repeated matvec

I Memory bound: 16O Hamiltonian is 6 terabytes

I Store lower half of matrix, distributed across:

d diagonal processors

d(d + 1)/2 total processors
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Matrix-Vector Multiply

Steps for matvec: input (x) and output (y ) vectors are stored on
diagonal processors
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y ← Ax
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Reduce(y )
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Load Balancing

I “Off-diagonal” processors must store approximately equal
numbers of matrix elements

I Depends on order of rows/columns



Load Balance: More Significant for Larger Problems

y = nnz within distance x of
main diagonal

y = nnz at distance x from
main diagonal



Characterization of nonzeros
Rows/columns indexed by many-body states

s =

many-body state︷ ︸︸ ︷
(s1, s2, . . . , sN) : si < si+1

si ’s are single-particle states

Physics excludes most of the
(

Nspstates
Nnucleons

)
many-body states

If s and t are many-body states that differ by more
than two single-particle states, the matrix element

indexed by s and t is exactly zero.

If not, we call s and t an interacting pair.



Characterization of nonzeros (continued)

E.g., if

a = (2, 3, 4, 7, 9, 12)

b = (1, 2, 4, 7, 8, 12)

c = (1, 4, 5, 7, 8, 9)

are many-body states, then (a, c) is not an interacting pair, but
(a, b) and (b, c) are interacting pairs.



Characterization of nonzeros (continued)

E.g., if

a = (2, 3, 4, 7, 9, 12)

b = (1, 2, 4, 7, 8, 12)

c = (1, 4, 5, 7, 8, 9)

are many-body states, then (a, c) is not an interacting pair, but
(a, b) and (b, c) are interacting pairs.



Characterization of nonzeros (continued)

E.g., if

a = (2, 3, 4, 7, 9, 12)

b = (1, 2, 4, 7, 8, 12)

c = (1, 4, 5, 7, 8, 9)

are many-body states, then (a, c) is not an interacting pair, but
(a, b) and (b, c) are interacting pairs.



Tiny Example
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Many-body State Distribution

Distribute many-body states among diagonal proccesors by
“round-robin”, not lexicographic order

proc 0 proc 1 proc 2 proc 3
(1,2,3,4) (1,2,3,5) (1,2,3,6) (1,2,4,5)
(1,2,4,6) (1,2,5,6) (1,3,4,5) (1,3,4,6)
(1,3,5,6) (1,4,5,6) (2,3,4,5) (2,3,4,6)



Without Round Robin



With Round Robin



Load Balanced Performance

Time to compute sparsity in seconds, off-diagonals only:

nproc (offdiag) average min max total idle
3 121.88 121.49 122.27 1.18
6 69.82 69.52 70.73 5.41
10 45.36 45.10 45.55 1.93
15 32.30 32.22 32.45 2.29

For production runs, variance in time to compute sparsity and
for each matvec is negligible.



The Need for Blocking
I Exhaustive pairwise comparison is prohibitively expensive
I Use clustering to identify large zero blocks
I Partition the single-particle states into bins, then cluster the

many-body states based on how many single-particle
states are in each bin.

E.g., using the partition
n
[1-4],[5-8],[9-12]

o
, we have

many-body states cluster identifiers

(2,3,4,7,9,12) (3,1,2)
(1,2,4,7,8,12) (3,2,1)
(1,4,5,7,8,9) (2,3,1)
(1,2,9,10,11,12) (2,0,4)



The Need for Blocking (Continued)

E.g., using the partition
{

[1-4],[5-8],[9-12]
}

, we have

many-body states cluster identifiers

(2,3,4,7,9,12) (3,1,2)
(1,2,4,7,8,12) (3,2,1)
(1,4,5,7,8,9) (2,3,1)
(1,2,9,10,11,12) (2,0,4)

Claim: Let S and T be cluster identifiers with
∥∥S − T

∥∥
1 > 4.

Then H{S,T} = 0.



Tiny Example with Blocking
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Coarse vs. Fine Blocking

I nonzeros
I potentially nonzero blocks
I zero blocks

Tradeoff between many fine blocks and few coarse blocks



Multilevel Blocking



Performance Results

Time to compute sparsity:

no blocking one level multiple levels
6He ∼ 43 minutes 180 seconds 90 seconds
12C > 100 hours ? ∼ 1 hour ∼ 13 minutes
16O > 100 hours ? ∼ 2 hours ∼ 20 minutes



Conclusions and Future Work

I Optimal multi-level partitions
I Store dense blocks as contiguous floats, one index per

block: only ∼10% savings with distribution scheme as
described above

I Permute rows and columns within a processor, improve
storage or matvec execution time

I Exponential sparseness away from diagonal
I Totally zero rows/columns
I Domain knowledge gives good partition–can we improve

by combining with combinatorial expertise?


