
The Combinatorial Structure of a Class of
Matrices Arising in Nuclear Physics

Computations

Philip Sternberg
in collaboration with

Applied Math
LBNL
Esmond Ng
Chao Yang

Ames Laboratory
Mascha Sosonkina

Nuclear Physics
Iowa State University
James Vary
Pieter Maris

CSCAPES 2008



Characteristics of the Problem

I Describe structure of nucleus
I Find lowest (10’s or 100’s) eigenpairs of large sparse

symmetric Hamiltonian matrix H
I Largest production run so far: 16O : 30 converged

eigenvalues
I LARGE: ∼ 2 · 109 rows/columns
I SPARSE: ∼ 8 · 1011 nonzeros
I Much larger matrices in the wings, waiting on computers

with more main memory

I Rule of thumb: number of nonzeros ∈ O(n1.5)

I Sparsity is defined by combinatorics (from physics), but
has no “nice” pattern



Challenges, Solved and Unsolved

I We have:
I 2-D matrix distribution scheme with low communication

needs for matvec
I Partition of rows/columns of H to keep matvec

load-balanced
I System for computing sparsity of H

I We would like:
I An alternate partitioning that preserves dense blocks of H
I Reordering of rows/columns per processor to improve

matrix storage and/or matvec time



Sparsity Structure for 6Li



Parallel Eigenvalue Computation

I Solved by Lanczos iteration: repeated matvec

I Memory bound: 16O Hamiltonian is 6 terabytes

I Store lower half of matrix, distributed across:

d diagonal processors

d(d + 1)/2 total processors

@
@
@
@
@
@
@@



Matrix-Vector Multiply

Steps for matvec: input (x) and output (y ) vectors are stored on
diagonal processors

1.
@
@
@
@@

?
?
?
?
??

BCast(x)

@
@
@
@@

�
�
�
�

�
�
�
�
��

y ← Ax

@
@
@
@@

-
-
-

Reduce(y )

2.
@
@
@
@@
���

��
�

BCast(x)

@
@
@
@@

�
�
�
�

�
�
�
�
��

y ← AT x

@
@
@
@@

6
6
6

Reduce(y )



Load Balancing

I “Off-diagonal” processors must store approximately equal
numbers of matrix elements

I Depends on order of rows/columns



Load Balance: More Significant for Larger Problems

y = nnz within distance x of
main diagonal

y = nnz at distance x from
main diagonal



Characterization of nonzeros
Rows/columns indexed by many-body states

s =

many-body state︷ ︸︸ ︷
(s1, s2, . . . , sN) : si < si+1

si ’s are single-particle states

Physics excludes most of the
(

Nspstates
Nnucleons

)
many-body states

If s and t are many-body states that differ by more
than two single-particle states, the matrix element

indexed by s and t is exactly zero.

If not, we call s and t an interacting pair.



Characterization of nonzeros (continued)

E.g., if

a = (2, 3, 4, 7, 9, 12)

b = (1, 2, 4, 7, 8, 12)

c = (1, 4, 5, 7, 8, 9)

are many-body states, then (a, c) is not an interacting pair, but
(a, b) and (b, c) are interacting pairs.



Characterization of nonzeros (continued)

E.g., if

a = (2, 3, 4, 7, 9, 12)

b = (1, 2, 4, 7, 8, 12)

c = (1, 4, 5, 7, 8, 9)

are many-body states, then (a, c) is not an interacting pair, but
(a, b) and (b, c) are interacting pairs.



Characterization of nonzeros (continued)

E.g., if

a = (2, 3, 4, 7, 9, 12)

b = (1, 2, 4, 7, 8, 12)

c = (1, 4, 5, 7, 8, 9)

are many-body states, then (a, c) is not an interacting pair, but
(a, b) and (b, c) are interacting pairs.



Tiny Example

(1,2,3,10)

(1,2,4,9)

(1,2,5,10)

(1,2,6,9)

(3,4,5,8)

(3,4,6,7)

(3,4,7,10)

(3,4,8,9)

(5,7,8,9)

(6,7,8,10)

(6,8,9,10)

(5,7,9,10)

(1
,2

,3
,1

0)
(1

,2
,4

,9
)

(1
,2

,5
,1

0)
(1

,2
,6

,9
)

(3
,4

,5
,8

)
(3

,4
,6

,7
)

(3
,4

,7
,1

0)
(3

,4
,8

,9
)

(5
,7

,8
,9

)
(6

,7
,8

,1
0)

(6
,8

,9
,1

0)
(5

,7
,9

,1
0)

{ { { { { { { { { { { {

{ {
{ { {
{ { { {

{ { {
{ {

{ {
{ { {
{ { { {

{ { {
{ {

{ {
{ { {
{ { { {

{ { {
{ {

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{
{ {
{

{



Many-body State Distribution

Distribute many-body states among diagonal proccesors by
“round-robin”, not lexicographic order

proc 0 proc 1 proc 2 proc 3
(1,2,3,4) (1,2,3,5) (1,2,3,6) (1,2,4,5)
(1,2,4,6) (1,2,5,6) (1,3,4,5) (1,3,4,6)
(1,3,5,6) (1,4,5,6) (2,3,4,5) (2,3,4,6)



Without Round Robin



With Round Robin



Load Balanced Performance

Time to compute sparsity in seconds, off-diagonals only:

nproc (offdiag) average min max total idle
3 121.88 121.49 122.27 1.18
6 69.82 69.52 70.73 5.41
10 45.36 45.10 45.55 1.93
15 32.30 32.22 32.45 2.29

For production runs, variance in time to compute sparsity and
for each matvec is negligible.



The Need for Blocking
I Exhaustive pairwise comparison is prohibitively expensive
I Use clustering to identify large zero blocks
I Partition the single-particle states into bins, then cluster the

many-body states based on how many single-particle
states are in each bin.

E.g., using the partition
n
[1-4],[5-8],[9-12]

o
, we have

many-body states cluster identifiers

(2,3,4,7,9,12) (3,1,2)
(1,2,4,7,8,12) (3,2,1)
(1,4,5,7,8,9) (2,3,1)
(1,2,9,10,11,12) (2,0,4)



The Need for Blocking (Continued)

E.g., using the partition
{

[1-4],[5-8],[9-12]
}

, we have

many-body states cluster identifiers

(2,3,4,7,9,12) (3,1,2)
(1,2,4,7,8,12) (3,2,1)
(1,4,5,7,8,9) (2,3,1)
(1,2,9,10,11,12) (2,0,4)

Claim: Let S and T be cluster identifiers with
∥∥S − T

∥∥
1 > 4.

Then H{S,T} = 0.



Tiny Example with Blocking

(1,2,3,10)

(1,2,4,9)

(1,2,5,10)

(1,2,6,9)

(3,4,5,8)

(3,4,6,7)

(3,4,7,10)

(3,4,8,9)

(5,7,8,9)

(6,7,8,10)

(6,8,9,10)

(5,7,9,10){
[1-2],[3-4],[5-6],[7-8],[9-10]

}

(2,1,0,0,1)
{

(2,0,1,0,1)
{

(0,2,1,1,0)
{

(0,2,0,1,1)
{

(0,0,1,2,1)
{

(0,0,1,1,2)
{

(1
,2

,3
,1

0)
(1

,2
,4

,9
)

(1
,2

,5
,1

0)
(1

,2
,6

,9
)

(3
,4

,5
,8

)
(3

,4
,6

,7
)

(3
,4

,7
,1

0)
(3

,4
,8

,9
)

(5
,7

,8
,9

)
(6

,7
,8

,1
0)

(6
,8

,9
,1

0)
(5

,7
,9

,1
0)

z z z z z z z z z z z z

z z
z z z
z z z z

z z z
z z

z z
z z z
z z z z

z z z
z z

z z
z z z
z z z z

z z z
z z

z

z

z

z

z

z

z

z

z

z

z

z

z
z

z

z
z z
z

z



Coarse vs. Fine Blocking

I nonzeros
I potentially nonzero blocks
I zero blocks

Tradeoff between many fine blocks and few coarse blocks



Multilevel Blocking



Performance Results

Time to compute sparsity:

no blocking one level multiple levels
6He ∼ 43 minutes 180 seconds 90 seconds
12C > 100 hours ? ∼ 1 hour ∼ 13 minutes
16O > 100 hours ? ∼ 2 hours ∼ 20 minutes



Conclusions and Future Work

I Optimal multi-level partitions
I Store dense blocks as contiguous floats, one index per

block: only ∼10% savings with distribution scheme as
described above

I Permute rows and columns within a processor, improve
storage or matvec execution time

I Exponential sparseness away from diagonal
I Totally zero rows/columns
I Domain knowledge gives good partition–can we improve

by combining with combinatorial expertise?


