
Combinatorial Aspects of
Automatic Differentiation

Paul D. Hovland

Mathematics & Computer Science Division

Argonne National Laboratory

Group Members

Andrew Lyons (U.Chicago)
Priyadarshini Malusare
Boyana Norris
Ilya Safro
Jaewook Shin
Jean Utke (joint w/ UChicago)
Programmer/postdoc TBD

Alumni: J. Abate, S. Bhowmick, C. Bischof, A. Griewank, P.
Khademi, J. Kim, U. Naumann, L. Roh, M. Strout, B. Winnicka

Funding

Current:
– DOE: Applied Mathematics Base Program
– DOE: Computer Science Base Program
– DOE: CSCAPES SciDAC Institute
– NASA: ECCO-II Consortium
– NSF: Collaborations in Math & Geoscience

Past:
– DOE: Applied Math
– NASA Langley
– NSF: ITR

Outline

Introduction to automatic differentiation (AD)
Some application highlights
Some combinatorial problems in AD
– Derivative accumulation
– Minimal representation
– Optimal checkpointing strategy
– Graph coloring

Summary of available tools
More application highlights
Conclusions

Why Automatic Differentiation?

Derivatives are used for
– Measuring the sensitivity of a simulation to unknown or poorly known

parameters (e.g.,how does ocean bottom topography affect flow?)
– Assessing the role of algorithm parameters in a numerical solution

(e.g., how does the filter radius impact a large eddy simulation?)
– Computing a descent direction in numerical optimization (e.g.,

compute gradients and Hessians for use in aircraft design)
– Solving discretized nonlinear PDEs (e.g., compute Jacobians or

Jacobian-vector products for combustion simulations)

Why Automatic Differentiation? (cont.)

Alternative #1:hand-coded derivatives
– hand-coding is tedious and error-prone
– coding time grows with program size and complexity
– automatically generated code may be faster
– no natural way to compute derivative matrix-vector products (Jv, JTv,

Hv) without forming full matrix
– maintenance is a problem (must maintain consistency)

Alternative #2: finite difference approximations
– introduce truncation error that in the best case halves the digits of

accuracy
– cost grows with number of independents
– no natural way to compute JTv products

AD in a Nutshell

Technique for computing analytic derivatives of programs (millions of loc)
Derivatives used in optimization, nonlinear PDEs, sensitivity analysis,
inverse problems, etc.
AD = analytic differentiation of elementary functions + propagation by
chain rule
– Every programming language provides a limited number of

elementary mathematical functions
– Thus, every function computed by a program may be viewed as the

composition of these so-called intrinsic functions
– Derivatives for the intrinsic functions are known and can be combined

using the chain rule of differential calculus
Associativity of the chain rule leads to two main modes: forward and
reverse
Can be implemented using source transformation or operator overloading

What is feasible & practical

Jacobians of functions with small number (1—1000) of independent
variables (forward mode)
Jacobians of functions with small number (1—100) of dependent
variables (reverse/adjoint mode)
Very (extremely) large, but (very) sparse Jacobians and Hessians
(forward mode plus coloring)
Jacobian-vector products (forward mode)
Transposed-Jacobian-vector products (adjoint mode)
Hessian-vector products (forward + adjoint modes)
Large, dense Jacobian matrices that are effectively sparse or effectively
low rank (e.g., see Abdel-Khalik et al., AD2008)

Application: Sensitivity analysis in simplified climate model

Sensitivity of flow through Drake Passage to ocean bottom topography
– Finite difference approximations: 23 days
– Naïve automatic differentiation: 2 hours 23 minutes
– Smart automatic differentiation: 22 minutes

Application: solution of nonlinear PDEs

Jacobian-free Newton-Krylov solution of model problem (driven cavity)

AD + TFQMR:
AD + BiCGStab:
FD(w=10-5) + GMRES:
FD(w=10-3) + GMRES:
AD + GMRES:
FD(w=10-5) + BiCGStab:
FD(w=10-7) + GMRES: does not converge
FD + TFQMR: does not converge

AD = automatic differentiation
FD = finite differences
W = noise estimate for Brown-Saad

118
42

32
31
31

22

0 20 40 60 80 100 120 140

Time to solution (sec)

Application: mesh quality optimization

Optimization used to move mesh vertices to create elements as close to
equilateral triangles/tetrahedrons as possible
Semi-automatic differentiation is 10-25% faster than hand-coding for
gradient and 5-10% faster than hand-coding for Hessian
Automatic differentiation is a factor 2-5 times faster than finite differences

Before After

Combinatorial problems in AD

Derivative accumulation

Minimal representation

Optimal checkpointing strategy

Graph coloring

Accumulating Derivatives

Represent function using a directed acyclic graph (DAG)
Computational graph
– Vertices are intermediate variables, annotated with function/operator
– Edges are unweighted

Linearized computational graph
– Edge weights are partial derivatives
– Vertex labels are not needed

Compute sum of weights over all paths from independent to dependent
variable(s), where the path weight is the product of the weights of all
edges along the path [Baur & Strassen]
Find an order in which to compute path weights that minimizes cost
(flops): identify common subpaths (=common subexpressions in
Jacobian)

A simple example

b = sin(y)*y
a = exp(x)
c = a*b
f = a*c

y x

sin exp

*
*

a

b

f *

c

A simple example

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

y x

f

a

c

t0

y

d0

b

a

a

y x

sin exp

*
*

a

b

f *

c

Brute force

Compute products of edge weights
along all paths
Sum all paths from same source to
same target
Hope the compiler does a good job
recognizing common subexpressions

dfdy = d0*y*a*a + t0*a*a
dfdx = a*b*a + a*c

8 mults 2 adds
y x

f

a

c

t0

y

d0

b

a

a

v1

v2

V-1 v0

v4

v3

v5

Vertex elimination

f

a

c

b

a

Multiply each in edge by each out
edge, add the product to the edge
from the predecessor to the
successor
Conserves path weights
This procedure always terminates
The terminal form is a bipartite graph

Vertex elimination

f
Multiply each in edge by each out
edge, add the product to the edge
from the predecessor to the
successor
Conserves path weights
This procedure always terminates
The terminal form is a bipartite graph

a*a
c + a*b

Forward mode: eliminate vertices in topological order

y x

f

a

c

t0

y

d0

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

v1

v2

v3

v4

Forward mode: eliminate vertices in topological order

xy

f

a

c

d1

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y

v2

v3

v4

Forward mode: eliminate vertices in topological order

xy

f

c

d2

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a

v3

v4

Forward mode: eliminate vertices in topological order

xy

f

d4

d2 d3

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a
d3 = a*b
d4 = a*c

v4

Forward mode: eliminate vertices in topological order

xy

f

dfdxdfdy

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a
d3 = a*b
d4 = a*c
dfdy = d2*a
dfdx = d4 + d3*a

6 mults 2 adds

Reverse mode: eliminate in reverse topological order

y x

f

a

c

t0

y

d0

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

v1

v2

v3

v4

Reverse mode: eliminate in reverse topological order

y x

f

d1
d2

t0

y

d0 a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*av1

v2

v3

Reverse mode: eliminate in reverse topological order

y x

f

d4 d2

d3

d0 a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1

v1 v3

Reverse mode: eliminate in reverse topological order

y x

f

d2

dfdy

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1
dfdy = d3 + d0*d4

v3

Reverse mode: eliminate in reverse topological order

xy

f

dfdxdfdy

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1
dfdy = d3 + d0*d4
dfdx = a*d2

6 mults 2 adds

“Cross-country” mode

y x

f

a

c

t0

y

d0

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

v1

v2

v3

v4

“Cross-country” mode

xy

f

a

c

d1

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y

v2

v3

v4

“Cross-country” mode

xy

f

d2 d3

d1
a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = a*a
d3 = c + b*a

v2

v3

“Cross-country” mode

y x

f

d3

dfdy

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = a*a
d3 = c + b*a
dfdy = d1*d2v3

“Cross-country” mode

xy

f

dfdxdfdy

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = a*a
d3 = c + b*a
dfdy = d1*d2
dfdx = a*d3

5 mults 2 adds

What We Know

Reverse mode is within a factor of 2 of optimal for functions with one
dependent variable. This bound is sharp.
Eliminating one edge at a time (edge elimination) can be cheaper than
eliminating entire vertices at a time
Eliminating pairs of edges (face elimination) can be cheaper than edge
elimination
Optimal Jacobian accumulation is NP hard
Various linear and polynomial time heuristics
Optimal orderings for certain special cases
– Polynomial time algorithm for optimal vertex elimination in the case

where all intermediate vertices have one out edge

What We Don’t Know

What is the worst case ratio of optimal vertex elimination to optimal edge
elimination? … edge to face?
When should we stop? (minimal representation problem)
How to adjust cost metric to account for cache/memory behavior?
Is O(min(#indeps,#deps)) a sharp bound for the cost of computing a
general Jacobian relative to the function?

Minimal graph of a Jacobian (scarcity)

Reduce graph to one with minimal number of edges (or smallest number of DOF)

How to find the minimal graph? Relationship to matrix properties?

Avoid “catastrophic fill in” (empirical evidence that this happens in practice)

In essence, represent Jacobian as sum/product of sparse/low-rank matrices

Original DAG Minimal DAGBipartite DAG

Practical Matters: constructing computational graphs

At compile time (source transformation)
– Structure of graph is known, but edge weights are not: in effect,

implement inspector (symbolic) phase at compile time (offline),
executor (numeric) phase at run time (online)

– In order to assemble graph from individual statements, must be able
to resolve aliases, be able to match variable definitions and uses

– Scope of computational graph construction is usually limited to
statements or basic blocks

– Computational graph usually has O(10)—O(100) vertices
At run time (operator overloading)
– Structure and weights both discovered at runtime
– Completely online—cannot afford polynomial time algorithms to

analyze graph
– Computational graph may have O(10,000) vertices

Reverse Mode and Checkpointing

Reverse mode propagates derivatives from dependent variables to
independent variables
Cost is proportional to number of dependent variables: ideal for scalar
functions with large number of independents
Gradient can be computed for small constant times cost of function
Partial derivatives of most intrinsics require value of input(s)
– d(a*b)/db = a, d(a*b)/da = b
– d(sin(x))/dx = cos(x)

Reversal of control flow requires that all intermediate values are
preserved or recomputed
Standard strategies rely on
– Taping: store all intermediate variables when they are overwritten
– Checkpointing: store data needed to restore state, recompute

Checkpointing: notation

Perform forward (function) computation

Perform reverse (adjoint) computation

Record overwritten variables (taping)

Checkpoint state at subroutine entry

Restore state from checkpoint

Combinations are possible:

Timestepping with no checkpoints

4 4 3 2 1321

Checkpointing based on timesteps

1 2 3 4 4 3 3 2 2 1 1

Checkpointing based on timesteps: parallelism

1 2 3 4 4

3 3

2 2

1 1

Checkpointing based on timesteps: parallelism

1 2 3 4 4

3 3

2

1

2

1

Checkpointing based on timestep: hierarchical

1 2 3 4 5 6 8 7 7 6 6

1 2 3

7 8 5 5

4 4 3 3 2 2 1 1

3-level checkpointing

Suppose we use 3-level checkpointing for 100 time steps, checkpointing
every 25 steps (at level 1), every 5 steps (at level 2), and every step (at
level 3)
Then, the checkpoints are stored in the following order:
25, 50, 75, 80, 85, 90, 95, 96, 97, 98, 99, 91, 92, 93, 94, 86, 87, 88, 89,
81, 82, 83, 84, 76, 77, 78, 79, 55, 60, 65, 70, 71, 72, 73, 74, 66, 67, 68,
69, 61, 62, 63, 64, 56, 57, 58, 59, 51, 52, 53, 54, 30, 35, 40, 45, 46, …

0 25 50 75 100

Checkpointing based on call tree

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

2

3 3

function split mode joint mode

Assume all subroutines have structure x.1, call child, x.2

split mode: 1.1t, 2.1t, 3.1t, 3.2t, 2.2t, 1.2t, 1.2a, 2.2a, 3.2a, 3.1a, 2.1a, 1.1a
joint mode: 1.1t, 2.1, 3.1, 3.2, 2.2, 1.2t, 1.2a, 2.1t, 3.1, 3.2, 2.2t, 2.2a, 3.1t,

3.2t, 3.2a, 3.1a, 2.1a, 1.1a

Checkpointing real applications

In practice, need a combination of all of these techniques
At the timestep level, 2- or 3-level checkpointing is typical: too many
timesteps to checkpoint every timestep
At the call tree level, some mixture of joint and split mode is desirable
– Pure split mode consumes too much memory
– Pure joint mode wastes time recomputing at the lowest levels of the

call tree
Currently, OpenAD provides a templating mechanism to simplify the use
of mixed checkpointing strategies
Future research will attempt to automate some of the checkpointing
strategy selection, including dynamic adaptation

Matrix Coloring

Jacobian matrices are often sparse
The forward mode of AD computes J × S, where S is usually an identity
matrix or a vector
Can “compress” Jacobian by choosing S such that structurally orthogonal
columns are combined
A set of columns are structurally orthogonal if no two of them have
nonzeros in the same row
Equivalent problem: color the graph whose adjacency matrix is JTJ
Equivalent problem: distance-2 color the bipartite graph of J

Matrix Coloring

1 2 0 0 5
0 0 3 0 0
0 2 3 4 0
1 0 0 0 0
0 0 0 4 5

1 2 0 0 5
0 0 3 0 0
0 2 3 4 0
1 0 0 0 0
0 0 0 4 5

1 2 0 0 5
0 0 3 0 0
0 2 3 4 0
1 0 0 0 0
0 0 0 4 5

1 2 0 5
3 0 0 0
3 2 4 0
1 0 0 0
0 0 4 5

1 2 5
0 0 3
4 2 3
1 0 0
4 0 5

1 2

3

4

5

1 2

3

4

5

Compressed Jacobian

Tools

Fortran 95
C/C++
Fortran 77
MATLAB

Tools: Fortran 95

TAF (FastOpt)
– Commercial tool
– Support for (almost) all of Fortran 95
– Used extensively in geophysical sciences applications

Tapenade (INRIA)
– Support for many Fortran 95 features
– Developed by a team with extensive compiler experience

OpenAD/F (Argonne/UChicago/Rice)
– Support for many Fortran 95 features
– Developed by a team with expertise in combintorial algorithms,

compilers, software engineering, and numerical analysis
– Development driven by climate model & astrophysics code

All three: forward and reverse; source transformation

Tools: C/C++

ADOL-C (Dresden)
– Mature tool
– Support for all of C++
– Operator overloading; forward and reverse modes

ADIC (Argonne/UChicago)
– Support for all of C, some C++
– Source transformation; forward mode (reverse under development)
– New version (2.0) based on industrial strength compiler infrastructure
– Shares some infrastructure with OpenAD/F

SACADO:
– Operator overloading; forward and reverse modes
– See Phipps presentation

TAC++ (FastOpt)
– Commercial tool (under development)
– Support for much of C/C++
– Source transformation; forward and reverse modes
– Shares some infrastructure with TAF

Tools: Fortran 77

ADIFOR (Rice/Argonne)
– Mature and very robust tool
– Support for all of Fortran 77
– Forward and (adequate) reverse modes
– Hundreds of users; ~150 citations

AdiMat (Aachen): source transformation
MAD (Cranfield/TOMLAB): operator overloading
Various research prototypes

Tools: MATLAB

Application highlights

Atmospheric chemistry
Breast cancer biostatistical analysis
CFD: CFL3D, NSC2KE, (Fluent 4.52: Aachen) ...
Chemical kinetics
Climate and weather: MITGCM, MM5, CICE
Semiconductor device simulation
Water reservoir simulation

Tuned parameters Standard parameters

- Simulated (yellow) and observed (green) March ice thickness (m)

Parameter tuning: sea ice model

Differentiated Toolkit: CVODES (nee SensPVODE)

Diurnal kinetics advection-
diffusion equation
100x100 structured grid
16 Pentium III nodes

Sensitivity Analysis: mesoscale weather model

Conclusions & Future Work

Automatic differentiation research involves a wide range of combinatorial
problems
AD is a powerful tool for scientific computing
Modern automatic differentiation tools are robust and produce efficient
code for complex simulation codes
– Robustness requires an industrial-strength compiler infrastructure
– Efficiency requires sophisticated compiler analysis

Effective use of automatic differentiation depends on insight into problem
structure
Future Work
– Further develop and test techniques for computing Jacobians that are

effectively sparse or effectively low rank
– Develop techniques to automatically generate complex and adaptive

checkpointing strategies

For More Information

Andreas Griewank, Evaluating Derivatives, SIAM, 2000.
Griewank, “On Automatic Differentiation”; this and other technical reports
available online at: http://www.mcs.anl.gov/autodiff/tech_reports.html
AD in general: http://www.mcs.anl.gov/autodiff/, http://www.autodiff.org/
ADIFOR: http://www.mcs.anl.gov/adifor/
ADIC: http://www.mcs.anl.gov/adic/
OpenAD: http://www.mcs.anl.gov/openad/
Other tools: http://www.autodiff.org/
E-mail: hovland@mcs.anl.gov

