
Graph Operations in Computational
Ecology

Viral B. Shah

Interactive Supercomputing
UC Santa Barbara

John Gilbert, Brad McRae, Steve Reinhardt, Alan Edelman, Parry Husbands

The Impossible Trinity

Languages
C++, F, MPI

Hardware
CPU, GPU,
Cell, XMT

Applications
GIS
Social Networks

CUDA

M, Py
*P

VACE

How will domain
scientists program ? …

… Or will computer
scientists program for
everyone ?

Application Areas

Keitt: Linking complexity sciences to computational infrastructure for
 petascale network analysis

Least Cost Paths

•  Commonly used in corridor design

From the ArcGIS user manual. Computations performed on raster
cell maps that may not fit in memory.

Least Cost Paths

McRae (2008)

Resistance as distance

•  Captures multiple pathways

– Gene flow
– Movement patterns

Circuitscape (3 days to 3 mins)

Funconn

Theobald: Habitat Modeling and Landscape Networks.

Example kernels
•  Brad McRae (Circuitscape): Connected components,

 Preconditioner construction (AMG)

•  David Theobald (Funnconn): Spanning trees,
 Betweenness centrality

•  James Watson: Strongly connected components

•  Tim Keitt: BGL + PostGIS

•  ArcGIS: Least cost paths, many others.

•  Multi-science applications: Combine climate models,
 ocean models, groundwater models, economic models
 with ecological models.

Special purpose hardware

Key Performance Metrics

Scientific computing
•  Traditionally just numerical computing

•  Increasingly, combinatorial computing

•  Users like desktop environments, often domain specific: Matlab,
Python, Mathematica, Excel, ArcGIS, many others.

•  Combine numerical and combinatorial computing in desktop
environments, and provide support for combinatorial computing to a
larger audience. (See our recent CiSE paper).

•  Integrate multi-science applications written by domain scientists,
leveraging special purpose hardware.

The Star-P Platform
•  Language Independent (To what extent ?)
•  Hardware Independent (To what extent ?)

Many Programming Models

•  Example: Connected Components
•  Pointer chasing with data-parallel computation
•  Local BFS with task-parallel computation
•  Are these models sufficient for combinatorial computing ?

Portability across Languages

function D = pointer_jumping (D)
 n = length(D);
 Dold = zeros(n,1);

 for i=1:1000
 Dold = D;
 D = D(D);
 end
end

 def pointer_jumping (self, D):
 n = D.size
 Dold = zeros(n);

 for i in arange(0,1000):
 Dold = D
 D = D[D]

 return D

•  Run both codes on a randomly permuted input vector with 1 million elements.
•  M code takes 57 seconds. Python takes 27 seconds.
•  Notice how similar the languages look, modulo operators and function names.
•  But, many subtle differences:

•  M is copy-by-value. Py is copy-by-reference.
•  Indexing and assignment look the same, but behave differently.

Questions

•  How will people who don’t understand
 combinatorial computing use it ?

•  In a language of their choice ?
•  On the hardware of their choice ?

•  High performance combinatorial computing ?
•  A BLAS for graphs ? (BGL, MTGL)
•  What does autotuning mean ? (ATLAS, OSKI, PHIPAC)

