
SANDIA REPORT
SAND2009-7291
Unlimited Release
Printed February 2009

Memory Opportunities for High
Performance Computing (MOHPC)
Final Report

Richard C. Murphy, Arun F. Rodrigues, James A. Ang

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2009-7291
Unlimited Release

Printed February 2009

Memory Opportunities for High Performance
Computing (MOHPC)

Final Report

Richard C. Murphy
Arun F. Rodrigues

James A. Ang
Scalable Computer Architectures, 1422

Sandia National Laboratories
P.O. Box 5800, MS-1319

Albuquerque, NM 87185-1319

Abstract

This report summarizes the deliberations and conclusions of the Memory Opportuni-
ties for High Performance Computing (MOHPC) workshop held at the Sandia CSRI
facility in Albuquerque, NM on January 9-10, 2008.

3

Acknowledgment

This report would be impossible without the efforts of a large number of people. Each
of the participants and presenters provided invaluable insight into our understanding
of the state of the art in memory systems, applications, programing models, and
computer architecture.

The MOHPC program committee shaped the direction of the workshop’s contents
and the selection of participants. We would like to thank Almadena Chtchelkanova,
Sudip Dosanjh, Bill Harrod, Fred Johnson, Dean Klein, Bob Lucas, Bob Meisner,
Mike Merrill, Lenore Mullin, Thomas Sterling, and Jeff Vetter for giving so generously
of their time.

We are thankful to the chairs and deputy chairs hosting productive breakout and
panel sessions: Mark Hill chaired the systems and CPU panel, Jeff Vetter and Mike
Heroux chaired the applications panel, Peter Kogge and Arun Rodrigues chaired the
architecture panel, and Mike Merrill and Bruce Hendrickson chaird the programming
models panel.

We are also tremendously indebted to Tina MacLuso for serving as the official record
keeper. Without her skillful notes and revisions, this report would not have been
possible.

Richard C. Murphy
Arun F. Rodrigues
James A. Ang

4

Table 1. MOHPC Participants

Name Affiliation Name Affiliation
Jim Ang SNL Bronson Messer ORNL
Brian Barrett SNL Lenore Mullin NSF
Jon Berry SNL Richard Murphy SNL
Greg Branch AMD Rich Oehler AMD
Maciej Brodowicz LSU Doug O’Flaherty AMD
Sumanta Chatterjee Oracle Thomas Olson Aerospace Corp.
Almadena Chtchelkanova NSF Mike Parker Cray
John Cieslewicz Columbia Univ. James Peery SNL
Carolyn Conner LANL Paul Petersen Micron
Alfred Costantine SAIC Steve Poole ORNL
John Daly LANL Dave Resnick Micron
Erik DeBenedictis SNL Rich Ridgely DOD
Jeff Draper USC/ISI Arun Rodrigues SNL
Rich Dondero SNL Glen Rosendale Nantero
Sudip Dosanjh SNL Kevin Ryan Micron
Guang Gao Univ. of Delaware Subhash Shinde SNL
Bill Harrod DARPA/IPTO Dylan Stark LSU
Scott Hemmert SNL Craig Steele Exogi LLC
Bruce Hendrickson SNL Rob Smith Nantero
Mike Heroux SNL Alan Snavley UCSD
Rick Hetherington SUN Richard Stempien MITRE
Mark Hill Univ. of Wisconsin Thomas Sterling LSU
Stephen Howell SNL Jim Sundet DOD
Bruce Jacob Univ/ of Maryland Garret Swart Oracle
Fred Johnson DOE/SC Gerry Taylor Nantero
Brent Keeth Micron Jim Tomkins SNL
Dean Klein Micron Jeff Vetter ORNL
Peter Kogge Notre Dame Pete Vogt Intel
Bob Lucas USC/ISI Harvey Wasserman LBL
Tina MacLuso SAIC Trey White ORNL
Ray McConnell Clearspeed Karl-Heinz Winkler LANL
Bob Meisner DOE/NNSA Rich Witek AMD
Mike Merrill DOD Tom Zipperian SNL

5

Table 2. MOHPC Topics

Topic Speaker
Memory Market Drivers Dean Klein, Micron
Memory Tutorial (Circuits and Packaging) Brent Keeth, Micron
Alternative Memory Architectures Glen Rosendale, Nantero
Systems and CPU Panel Chair: Mark Hill, Wisconsin

Rich Oehler, AMD
Mike Parker, Cray
Pete Vogt, Intel
Ray McConnell, Clearspeed

Breakout Sessions and Critiques: Co-chairs:
Applications Jeff Vetter (ORNL)

Mike Heroux (SNL)
Architecture Peter Kogge (ND)

Arun Rodrigues (SNL)
Programming Models Mike Merrill (DOD)

Bruce Hendrickson (SNL)

6

Table 3. Acronyms

Acronym Meaning
API Application Programming Interface
AMO Atomic Memory Operation
CAM Content Addressable Memory
CAS Column Address Strobe
CPU Central Processing Unit
DIMM Dual In-line Memory Module
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
FFT Fast Fourier Transform
HPC High Performance Computing
I/O Input/Output
ISA Instruction Set Architecture
MOHPC Memory Opportunities for High Performance Computing
MPI Message Passing Interface
OS Operating System
PDE Partial Differential Equation
PIM Processing-In-Memory
RAS Row Address Strobe
RLDRAM Reduced Latency DRAM
TLB Translation Lookaside Buffer
TM Transactional Memory

7

Contents

Participants 5

Topics 6

Acronyms 7

1 Introduction 13

2 Architecture 15

Metrics . 15

Issues & Problems . 15

Proposals . 16

“Smarter” Memory Controller & Software Interface 16

Radically More Concurrency in the Memory System 17

Other Proposals . 18

Cross Pollination . 19

Applications to Architecture . 19

Programming Models to Architecture . 19

3 Applications 21

Application Motifs . 21

Sparse Methods . 21

Database and Informatics Applications . 22

Everything Else . 22

Challenges . 22

8

Performance of Indirect Addressing . 22

Transparency of Memory Performance . 23

Keeping Reliability Above Suspicion . 23

Memory Capacity . 23

Smart Memory Analysis . 23

Adoption . 24

Cross Pollination . 25

Architecture to Applications . 25

Programming Models to Applications . 26

4 Programming Models 27

Issues & Problems . 27

Proposals . 27

Diagnostics . 28

Synchronization . 28

Enabling Programmer Access . 29

Intelligent Memory Controllers . 29

Hierarchy . 29

Cross Pollination . 30

Architecture to Programming Models . 30

Applications to Programming Models . 31

5 Summary and Recommendations 33

9

List of Figures

2.1 Highly concurrent memory system example . 17

10

List of Tables

1 MOHPC Participants . 5

2 MOHPC Topics . 6

3 Acronyms . 7

3.1 Application Programmer Feature Adoption Willingness 24

11

12

Chapter 1

Introduction

The memory wall, and more generally in a parallel system, the data movement prob-
lem has long dominated system performance. While well known, the implications of
these challenges are perhaps poorly understood. The Memory Opportunities for High
Performance Computing (MOHPC) workshop met to better quantify the problems of
memory performance in the context of supercomputing.

In addition to the performance problems associated with memory, the commodity
nature of the part poses unique industry challenges. The overall DRAM market has
grown to nearly $30 billion, but in 2007 invested approximately 2/3 that amount in
capital expenditures. Additionally, while standards are required for industry adoption
(via JEDEC, which represents over 290 companies), the consensus driven process
slows time to market. Furthermore, processor vendors are often motivated to keep
the memory system “as dumb as possible”, which may negatively impact overall HPC
system performance and power budgets.

Technically, DRAM faces several challenges:

• Power: at large scale, DRAM consumes a large fraction of a machine’s power
budget. In an environment where moving the data to a computation unit is
more energy inefficient than performing a mathematical operation, DRAM’s
traditional row/column design wastes power.

• Latency: experimental results show that many applications of interest to the
community are latency dominated. There are fewer available mechanisms for
decreasing memory latency even in an environment where clock cycle times
are relatively flat. Few techniques remain to address DRAM latency without
fundamentally changing the interface architecture.

• Bandwidth: increased packaging costs limit the ability of DRAM devices to
deliver bandwidth to processors.

• Capacity: memory capacity on a per-core basis is increasingly difficult to de-
liver as core counts may accelerate faster than available memory channels. This
poses a significant challenge for application developers as surface:volume ratios
change accordingly. If current trends continue, memory capacity is expected to

13

grow at a rate approximately 2X slower than the number of cores is expected
to grow.

From an application and programming model perspective, the memory system suf-
fers from a lack of expressibility. In fact, typical memory hierarchies provide the
programmer with little or no ability to describe the types of data operations being
performed (even very simple descriptions such as “this data is to be used once”). Fur-
thermore, most hierarchies are designed to obscure their structure from observation
by the programmer.

Typically, a lack of performance feedback from the memory system inhibits the ap-
plication’s ability to understand performance bottlenecks.

There is significant opportunity to optimize memory system performance, more ex-
plicitly define data movement throughout the system, and enable enhanced synchro-
nization in the memory system. However, there are significant challenges to doing so
in a fashion that is sustainable long-term. Applications far outlive hardware, and, as
a result, application developers are typically unwilling to adopt ephemeral features.
Portability across a range of architectures often helps to alleviate these concerns, but,
thus far there are no portable programming models that enable the expression of data
movement throughout the memory system.

The MOHPC workshop gathered over 60 participants in HPC (see Table 1). The
workshop began with three presentations and a panel before splitting into three break-
out groups focusing on Applications, Architecture, and Programming Models. This is
summarized in Table 2. Each breakout group had two phases of discussion. The first
phase concentrated on describing the technical challenges and memory opportunities
from the perspective of their specific breakout group. All participants convened for
overview presentations from each breakout group. The second phase for the breakout
groups was focused on “cross-pollination” discussions to reflect on and respond to the
overview presented by the other two groups.

The remainder of this report is organized as follows. Chapter 2 describes the pro-
ceedings of the Architecture breakout. Chapter 3 describes the deliberations of the
Applications group. Chapter 4 describes the Programming Model’s groups discus-
sions. Finally, Chapter 5 provides a final summary with recommendations.

14

Chapter 2

Architecture

The Architecture Breakout Group was tasked with finding an architectural perspec-
tive on future memory systems. The problems of power, capacity, and performance
are all amplified in large scale HPC systems, and often require architectural solutions.
At the same time, new solutions still must accommodate existing “legacy” codes, or
at least provide an easy transition path.

Discussion began with identification of the key metrics by which a memory system
can be judged. This naturally became a discussion on the crucial architectural chal-
lenges and problems facing future memory systems. Identifying these challenges led
to several proposals to address them, two of which were developed in detail. In
later “cross-pollination” discussions, the findings of the applications and program-
ming model groups were examined.

Metrics

The first set of metrics to be defined were the most clear cut: capacity, performance
(primarily defined as both bandwidth and latency), and power.

When examining performance, the measurement is more difficult. The question of
bandwidth can be reexamined as “effective bandwidth” - i.e. are we wasting the bits
we transfer? What is the overhead of address to data bits? Also, performance is best
expressed as “per pin” or “per picojoule.”

Other metrics include the complexity of access commands and the desirability of meta-
information in the data for synchronization, forwarding, exceptions, and notification.

Issues & Problems

Several issues were noted:

• Capacity: It was noted that capacity (in terms of DIMMs per channel) has

15

largely plateaued or even fallen, and this was unlikely to change in the DDR-
based technologies. This problem is exacerbated by multicore. Currently, the
DDR pads consume about the area of a single processor core, but unlike cores,
pad area is not scaling with Moore’s law.

• Power: DRAM is the major consumer of power in many commercial envi-
ronments. A comparison was made with CPUs which have low-power states.
Memory parts have similar states, but they are often not used. Power is often
wasted due to the granularity of access (e.g. several open rows in a DIMM are
activated, but only a few bits from each DRAM access is sent to the pins). Ad-
ditionally, DRAM refresh is inefficient as it focuses on worst-case performance.

• Lack of hints: Software lacks hints to communicate with the memory hierarchy
and controller(s). Operations where hints might be useful would include Cache
Management (e.g. single touch data), DRAM Row Management (open/closed
policy), specifying scratchpad, and the ability to specify an access pattern.

• Smart memory: A “Smart” memory brings additional issues. Data placement
or affinity becomes more important to avoid hot spots and keep multiple memory
controllers, DIMMs, and DRAM banks balanced. TLB reach is insufficient
on current architectures and needs OS support to use superpages and non-
continuous pages. Integration with the network also becomes an issue: should
memory be attached to a processor, or should we have “memory-in-network?”

• FLASH: The emergence of FLASH and non-volatile memories raises the ques-
tion of how it should be integrated into a system.

Proposals

“Smarter” Memory Controller & Software Interface

One proposal to address several of these issues was to construct a “smarter” memory
controller and accompany it with a memory-centric software interface. This memory
controller would support at least two modes. In one mode, it could perform intro-
spection and prediction, and so act as a very powerful prefetcher. To allow good
scheduling decisions, the controller would need to know who generated the request,
whether it is a read/write/prefetch or instruction fetch. It would also have to be
multi-core and multi-threaded aware. This would allow analysis to enable prefetch-
ing and improve data placement. Another mode would allow the programmer explicit
control of data transfers and other capabilities.

Some proposed capabilities:

16

• Statistics gathering: A detailed set of memory controller performance regis-
ters.

• Reference hints: Including usage hints (e.g. single touch data, read-only data,
open/closed page hints) and type (instruction, data, prefetch, etc...).

• Scratchpad: Provide an I/O scratchpad for staging data or containing fre-
quently used data.

• Flexible Data Movement: Allow very flexible programmable prefetch and
DMA. This would allow traditional fixed stride accesses, irregular access pat-
terns, and scatter/gather across the memory hierarchy.

• Asynchronous Notification: Operations would needed to be queued and
performed asynchronously to allow overlap of computation and data transfer.

The enable these features, serious support from the OS would need to be provided. For
example, a user-visible scratchpad memory has resource management and contention
requirements which would need to be examined. Also, to encourage adoption, a cross-
compatible emulation library would be needed to allow use on platforms which lack
the smarter hardware.

Radically More Concurrency in the Memory System

CPU

24 24

CPU

4 4 4

4 4 4

4 4 4

•
•
•

Figure 2.1. Highly concurrent memory system example

A second proposal suggested introducing much more concurrency into the memory
system to mask slower, narrower memory channels. In this proposal, rather than
a few wide (10s or 100s of pins/bits), fast (100s of MHz), shallow (1-2 DIMMS)
channels attached to each memory controller, use many narrower (<10 bits/pins),
slower, deeper (8 or more DIMMS) memory channels (Figure 2.1).

This organization would rely on massive concurrency from a large number of proces-
sors (and possibly network interfaces) to mask somewhat higher latency and lower

17

bandwidth. Potentially, it could provide much more memory capacity at a lower cost
(due to pin savings and possibly easier board layout) and at less power. It may also
be a good fit to processors with a large number of “skinny” cores. Alternately, adding
more banks to each DRAM device could achieve similar results (more concurrency).

This organization is not without drawbacks. The biggest being the increase in latency.
Also, the memory controllers would have to be more complex to keep track of more
accesses “in-flight” at a time. The design would require more (and more complex)
memory controllers at a cost in silicon area and power.

Other Proposals

Several other proposals were also voiced, though they were not explored in as much
detail.

• Hierarchy: The insertion of a new level of the memory hierarchy composed of
non-volatile memory or a memory technology denser than DRAM could open
new possibilities. The biggest constraint is in the usage model: should it be
transparent to the user, or should it be explicitly managed? Should the interface
be block-transfer streaming or load/store?

• TLB improvement: The improvement of TLB reach and flexibility may be
necessary for many smarter memories. The use of superpages or non-contiguous
pages would increase reach and flexibility. This would require extensive support
from the OS.

• Scratchpad: A scratchpad memory or lockable cache could provide improved
latency, bandwidth, and more regular timing. However, this would also require
OS support to manage resources. It is probable that library developers would
be the best end-user for these features, as applications may cause too much
contention and require more hand-tuning.

• Partial Row Activation: Increased use of posted Column Access Storbe
(CAS) would allow greater efficiency by avoiding activating unneeded portions
of the open row. This feature is already available in RLDRAM.

• Optical Memory Connections: Direct optical connections between the mem-
ory and processor could improve bandwidth and lower power. Though there are
fabrication issues involved with optics on the chip, advanced packaging tech-
niques may overcome them.

• Tagged memory: Memory data may be tagged to contain meta-information
for synchronization, forwarding, exceptions, and notification. This could be
useful for highly multithreaded applications, or for debugging.

18

Cross Pollination

Applications to Architecture

The application group was unified in the desire for increased control and the ability
to express application requirements, while simultaneously expressing disinterest in
features that may be short lived or are not portable.

In general, the application group agreed that the architecture must support the grace-
ful evolution of code. Creating ephemeral features, particularly those which may
have a major impact in application performance (if the application is not modified)
is particularly problematic. Investments in the current code base are huge, and an
understanding of the impact of architectural change, as well as a plan for continuing
new features is highly desirable.

While the architecture group’s metrics are strong, the mapping of those metrics to
applications is complex. The ultimate metric is likely application throughput per unit
cost, and the proposed architecture metrics have no obvious/direct correlation.

Finally, the architecture group should use relevant applications in the analysis of
impact. Analysis with simplistic or un-realistic benchmarks can be very misleading
and damagaing to the HPC community.

Programming Models to Architecture

The programming models group generally wanted the architecture group to push in
more potentially disruptive areas, which tended not to be considered. In general the
other two group’s theme of a requirement for well supported, portable mechanisms
to enable new classes of memory architectures was maintained.

The primary concern of the programming models group to the architecture proposals
are that they are very processor-centric (and lack discussion of the Data or Mem-
ory/Push model). Additional discussion of data movement possibilities would be
desirable. The group also noted a lack of discussion of disruptive technologies, such
as Processing-In-Memory (PIM).

A discussion of “Willing To Do” and “Not Willing To Do”, similar to the application
group’s would be profitable in the future. As with the application group, the pro-
gramming models group is willing to assume more of the burden of overall control of
the memory system. For example, a significant loosening of load/store consistency,
potentially to the point of making it a software/compiler problem may be of inter-
est. The architecture group expressed distrust of these approaches, noting that the
application programmer and compiler developer may be unwilling to accept the re-
sponsibility, or that providing that level of control may increase software complexity

19

too much.

Finally, the group also recommended an extended discussion of virtualization through-
out the system.

20

Chapter 3

Applications

The Applications Breakout Group was charged with evaluating the capabilities of
the hardware and how those capabilities might be exposed by the underlying pro-
gramming model in the context of a mature code base that has undergone extensive
development. Indeed, because application life far exceeds machine life, architecture
features that do not endure tend to be near impossible to support in the code base.

Discussion began with Application Motifs, focusing on physics, informatics, and other
key applications. It progressed to a discussion of challenges presented by various gen-
eral hardware and programming models options. The group examined the applicabil-
ity of more intelligent memory technology to those challenges . Then the application
group ended by providing a set of things they are both willing to consider and un-
willing to consider for the adoption of new technology. Finally, the cross-pollination
discussion is summarized.

Application Motifs

The Application group divided the space into three general motifs: sparse methods,
database and informatics applications, and everything else.

Sparse Methods

Many sparse methods represent core HPC applications over a long time period. They
include:

• Structured Grids with non-unit stride, iterating over different dimensions or
visiting different slices

• Unstructured Grids that may benefit from Gather/Scatter capabilities, iterating
with indirect references and irregular connectivity patterns

• Spectral (FFTs) with non-unit strides

21

• Adaptive (structured and unstructured) with time varying data structures

Database and Informatics Applications

Database and informatics represent newer HPC applications areas, and are often
applied to the results of simulations or large real-world data sets. Consequently,
there is less certainty about core application properties. The following key properties
were defined:

• Data is often accessed only once

• Simultaneous heavy access to uniform arrays and irregular random accesses
often interfere with each other

• Scratch pad memories could help (e.g., the Cray-2 local memory)

• There may be an as yet unquantified similarity to PDEs

Everything Else

Additional relevant applications include:

• Large Graph Traversals including reorderings, and especially non-PDE graphs

• Monte Carlo methods

• Virtualization that may include additional layers of indirection

Challenges

Each of the above enumerated application areas shares a set of common challenges
for the application developer.

Performance of Indirect Addressing

One clear performance bottleneck is the ability of the architecture to perform complex
indirect addressing. This is true across all application domains, but may particularly
be seen in the database and informatics codes. It has long been observed that real ap-
plications tend not to saturate the memory bus on conventional architectures, which

22

is primarily caused by two factors: first, data dependencies within the application
make it difficult to generate addresses quickly enough to achieve full memory band-
width; and second, the memory system may not support enough concurrency to allow
sufficient issue where the dependencies are less complicated.

Transparency of Memory Performance

Complex memory hierarchies increase the complexity of understanding application
performance. Automation or sets of tools to facilitate understanding and optimizing
memory performance are highly desirable, especially for changing platform hardware
targets.

Keeping Reliability Above Suspicion

Increasing machine memory size has produced subsystems (e.g., disks) where silent
data corruption is possible, and this should not be allowed in the core compute
environment. Both the recovery from and reporting of errors is critical.

Memory Capacity

Finally, although memory capacity per core may be declining in order to achieve full
memory bus bandwidth, this is undesirable from an application perspective.

Smart Memory Analysis

Increased programmer control over the memory system is considered highly desir-
able, particularly as it may improve the effective use of both bandwidth and power.
Today’s memory systems provide significant waste in cache-sized in application envi-
ronments with low spatial locality, wasted sharing, and relatively low temporal reuse.
Scatter/gather and non-unit stride memory access support could potentially alleviate
the compulsory miss problem.

Again, transparency of memory performance is a critical issue. The application
breakout group felt that a predictable performance model and deterministic behavior
combined with support for introspection (memory usage statistics, overall footprint,
hotspots, etc.) would facilitate the development of high performance applications.

Supporting fine-grain memory synchronization (e.g., XMT full/empty bits or trans-
actional memory), and a set of robust atomic memory operations was also considered

23

Table 3.1. Application Programmer Feature Adoption
Willingness

Willing To Do Not Willing To Do
Add directives/pragmas Adopt non-portable programming features

(Except, possibly specialized kernels)
Evolve to address system design challenges Abandon the existing code base

of benefit. Potentially coupling those memory operations with better data place-
ment control (e.g., cache bypassing atomics) would also facilitate better overall CPU
performance.

A set of simple in-memory operations could be beneficial. These include:

• Memory Clear

• Memory Replication

• Memory Copy

• Garbage Collection

• Simple Pattern Search

Finally, application runtime reconfiguration of memory is highly desirable, including
small content addressable memories (CAMs), a runtime declared “scratchpad”, or
support for specially placed variables within an application.

Adoption

The group came to a consensus about what application programmers would and
would not be willing to do, as well as areas where there may be reluctance. This is
summarized in Table 3.1.

As a group, they expressed reluctance to adopt a new language unless it could be
done incrementally, and they were also reluctant to examine the current programming
model.

The application group felt that their current programming model could be enhanced
to support new memory devices, as well as existing systems. In general, the desire
is for an increased ability to express locality. Three core examples were discussed:
single-use data, which should not be cached; affinity between work and data; and
replication (particularly for ghost nodes).

24

Portable mechanisms for defining a scratchpad memory and CAMs were also consid-
ered desirable.

Finally, introspection and performance transparency should be exposed by the lan-
guage through the runtime system.

Cross Pollination

Architecture to Applications

The architecture group expressed some unifying themes when looking at the program-
ming models and applications group’s findings:

• What does the general multicore community need? Is it a better MPI?
Better threads? Streaming programs?

• We cannot just look at HPC. But, we can draw on the HPC community’s
expertise. There is significant cross over if we look for it. The HPC community
has been looking at concurrency and scalability for decades. We can help the
commodity computing industry figure out 8 and 16 cores and tell them about
the pitfalls at 10,000 or 100,000. By demonstrating the growth path from 8 to
10000 cores and beyond the HPC community can have the most influence.

• FLOPS are free - but only in bulk. AMD and Intel can make cheap FLOPS
only because they produce millions of processors. From a usage perspective, it
might be perceived to be free - but the hours and effort that go into creating
them are intensely complex - often measured in man-millennia.

Comments on the applications breakout group:

• Single-touch data: This is feasible, however it must be universally supported
(in hardware or emulation) to be useful. Also, there are options for the gran-
ularity it is performed at. Perhaps the easiest is to do this add the page level
(i.e. added to TLB). There are other options for hints, including modifications
to the ISA.

• Scratchpad: While feasible, a key concern is that saving state is difficult and
expensive. Additionally, a scratchpad presents resource contention issues. A
lockable cache may be easier to implement and manage. A key question for the
application writers is to express why they want a scratch pad. Is it because it
makes naming easier? Is it for bandwidth? latency? guaranteed timing? Also,
there are the standard concerns about portability.

25

• Smarter memory: The operations proposed (DMA in memory, garbage col-
lection, searching, etc...) are good ideas and broadly feasible. However, they are
more difficult to perform across several memory controllers, especially if data is
striped across channels (which may be desirable to avoid hotspots). Coordinat-
ing a search or garbage collection in hardware across several memory controllers
(each running with multiple memory mappings) would be difficult.

• Applications unwilling to adopt non-portable features: If this is the
case, they may may have to accept emulation on some platforms. This also
argues for standards across vendors to express extended-memory functionality.
This presents a common “chicken and egg” problem - will application writers
adopt a new feature if it must be emulated on certain platforms, or must it be
universally supported? Will hardware vendors add a new feature before there
is broad acceptance amongst application writers?

Programming Models to Applications

The programming models group generally wanted the application group to push in
more potentially disruptive areas, which tended not to be considered. In general the
other two group’s theme of a requirement for well supported, portable mechanisms
to enable new classes of memory architectures was maintained.

The group again noted the productivity of the “Will Do”/”Will Not Do” list, but
noted that to have significant impact the discussion will have to be extended to
additional communities (outside of the HPC community). Furthermore, future trends
in application design are not well understood.

It may be productive for application experts to propose ideal strawman architec-
ture and runtime models to serve as the basis for discussion. This would produce
application driven requirements and facilitate further discussion.

The group also noted that developing “easy-to-write” experimental code, where per-
formance may be less critical, vs. more performant code should be enabled in future
programming models. Additionally, various organizations are willing to put differ-
ing levels of effort into performance improvements. For example, Oracle expressed a
willingness to put more effort into a smaller performance gain than did the DOE.

Finally, the applications group also lacked much discussion of disruptive technologies,
such as active messages and other forms of continuation-based programming.

26

Chapter 4

Programming Models

The programming models group was charged with evaluating the potential for en-
abling architectural innovation to be used by applications. This breakout report de-
scribes the issues and problems related to enabling new data movement architectures,
enumerates proposals for doing so, and ends with a discussion of “cross-pollinating”
ideas from the architecture and applications groups.

Issues & Problems

The group looked at two models for data movement:

1. Control: or CPU/Pull model, in which data movement is a function of program
control flow and primarily orchestrated by the processor

2. Data: or the Memory/Push model, in which the memory system controls data
movement into the CPU (similar to the HTMT Percolation model1.

The group concluded that both perspectives are needed, and that they are in no way
mutually exclusive.

It was also observed that computation is now less expensive than data movement, and
that named CPUs may inhibit the programmer’s ability to describe data movement.
Specifically, current systems may overemphasize the control model.

Proposals

The group provided recommendations in five areas: memory system diagnostics, syn-
chronization, enabling programmer access to enhanced memory systems, more intel-

1See: Jacquet, Janot, Govindarijan, Leung, Gao, and Sterling, Executable Performance Model
and Evaluation of High Performance Architectures with Percolation, University of Delaware, CAPSL
Technical Memo 43, November 21, 2002.

27

ligent memory controllers, and issues surrounding memory hierarchy.

Diagnostics

As noted by both the architecture and application groups, enhanced memory in-
trospection is critical to understanding and optimizing system performance. The
programming models group went further to note that this is a problem at both the
user and runtime levels. They further note a lack of tools available to the program-
mer for diagnosing memory system performance, specifically because typical systems
attempt to hide the hierarchy from the user. Further, while the programmer is often
willing and able to provide hints (e.g., “this data is only used once and should not be
cached”), programming languages typically lack the ability to express these hints, and
architectures typically lack the mechanisms to take advantage of them. For example,
architecturally, there are often non-caching memory regions for I/O subsystems, but
few convenient mechanisms in a processor’s ISA to perform a non-caching loads.

The lack of diagnostics often leads to an inability to precisely identify data access
problems within an application, including hotspots, race conditions, inter-thread data
corruption, or other memory mismanagement. These diagnostic capabilities are lack-
ing throughout the system: in the execution, runtime, and application models.

Synchronization

Numerous strong proposals for enhanced memory synchronization mechanisms exist
including:

• Atomic Memory Operations (AMOs)

• Full/Empty bits (that appear in the Cray XMT, Cray/Tera MTA, and Denelcor
HEP)

• Transactional Memory (TM)

• orderless synchronization

However, these mechanisms tend to be poorly supported in most architectures, and
when supported are not typically portable. Consequently, programming model and
application support to express synchronization tends to be weak. This is a particularly
critical problem in multicore processors that increase concurrency without creating a
correspondingly simpler mechanism for synchronization.

28

Enabling Programmer Access

The group discussed enabling programmer access through a series of memory hints (for
managing the hierarchy, data movement, and synchronization). It was further noted
that a lack of portability and expressibility inhibits new features. This complements
the conclusions of the applications group.

Intelligent Memory Controllers

As with the architecture and application groups, the programming models group
agrees that there is significant potential utility in an enhanced memory controller.
Critically, such a controller could enable data movement operations (such as scat-
ter/gather), as well as synchronization, particularly in the form of AMOs. AMOs
are attractive because many atomic updates should occur “in memory” without the
cache pollution that would result form processor-based implementations. The mem-
ory controller is the closest place to put these operations.

Once again, the user programmability issue is of significant concern. The question of
how to enable these operations portably and so that they act in a predictable fashion
across a range of architectures is a challenge for all three breakout groups.

Additionally, prior attempts at intelligent memory controller design, most notably
Impulse, ran into problems of virtualization and aliasing because they were not tightly
coupled to the processor. Better processor integration for future intelligent memory
systems is highly desirable. For example, atomic memory operations issued as an
instruction in the processor that occur at the place within the memory hierarchy that
“owns” a particular data item are much more transparent to the programmer than
those that may only be issued at the memory controller.

Hierarchy

The group noted the difficulty of managing the memory hierarchy, and that these hi-
erarchies are becoming increasingly complex. Additionally, requirements for hierarchy
management (both from an architectural and application programmer perspective)
may be conflicting. For example, the desire for cache awareness and cache oblivious-
ness are in conflict.

The use of “local” memory (scratch pads, etc.) shows significant promise, but tends
to also be performed in a non-portable fashion. Additionally, there tend to be few
mechanisms for coping with the expansion of the memory hierarchy.

29

Cross Pollination

Architecture to Programming Models

The architecture group expressed some unifying themes when looking at the program-
ming models and applications group’s findings:

• What does the general multicore community need? Is it a better MPI?
Better threads? Streaming programs?

• We cannot just look at HPC. But, we can draw on the HPC community’s
expertise. There is significant cross over if we look for it. The HPC community
has been looking at concurrency and scalability for decades. We can help the
commodity computing industry figure out 8 and 16 cores and tell them about
the pitfalls at 10,000 or 100,000. By demonstrating the growth path from 8 to
10000 cores and beyond the HPC community can have the most influence.

• FLOPS are free - but only in bulk. AMD and Intel can make cheap FLOPS
only because they produce millions of processors. From a usage perspective, it
might be perceived to be free - but the hours and effort that go into creating
them are intensely complex - often measured in man-millennia.

Comments on the Programming Models breakout group:

• Instrumentation: Putting in a counter is easy, but only if you know what
you are counting. Also, there is impact for process context switching (and so
some extent for thread switching). Hotspots, race conditions, etc. are hard for
hardware to detect because it cannot measure program intention. Hardware
would need more data, possibly through tagged memory.

• Memory synchronization: AMOs are very feasible and relatively easy to
implement. Additionally, weak ordering is needed for scalability.

• Smarter Memory Controller: Features like scatter/gather, AMOs, user pro-
grammable caching, and virtualization are all feasible.

• Memory Hierarchy: Though there was general agreement on the utility of
abstraction and the desirability of better use of local memory, this raised counter
questions. How would the programmer want to handle FLASH or other memory
(block addressing, streaming, Load/Store)? Also, how do we (safely) make it
“user” visible and not just OS-visible?

30

Applications to Programming Models

The application group was unified in the desire for increased control and the ability
to express application requirements, while simultaneously expressing disinterest in
features that may be short lived or are not portable.

The application group uniformly agreed that additional access to diagnostic and per-
formance information is highly desirable, however, historically it has proven very
difficult to generate a robust, portable, non-ephemeral API to support these features.

Providing the programmer with options is also desirable, pragmas are often broken
or ignored. The interface presented to the programmer should not require the pro-
grammer to think deeply about the implementation of the memory system, rather it
should allow for the expression of programmer knowledge about data access patterns.

31

32

Chapter 5

Summary and Recommendations

The memory wall is a tremendous problem for HPC. The technology problems of
power, latency, bandwidth, and capacity will only continue to intensify without invest-
ment on the part of the government. However, enabling architectural and technology
solutions requires significant cooperation from application and programming models
developers. The MOHPC group offers the following eight broad recommendations:

1. Continued Investment in Memory Technology: the problem can be ad-
dressed by an application requirement driven initiative with industry. Given the
challenges of competing in a heavily competitive commodity market place, we
recommend supporting on-shore memory capabilities through advanced tech-
nology development.

2. Engaging Other Constituencies: historically, the HPC community has often
relied on technologies from other communities to fulfill mission requirements.
In this case, we believe a proactive approach could lead to a broadly acceptable
technology with heavy HPC influence. Because the community owns and under-
stands the key application set, we are in a position to turn that understanding
into real deliverables.

3. Application Focus: relying on simplistic or un-realistic benchmarks can be
very misleading and damaging to the HPC community. When in doubt, enabling
programmer control should take precedence.

4. Improved Memory Hierarchy Understanding and Introspection: each
MOHPC breakout group requested less obfuscation of the memory system and
an improved ability to identify software problems. This should be supported at
all levels from the architecture, through the runtime and programming model,
and to the application.

5. CPU and Memory System Integration: future systems should support
both the traditional “CPU pull” and emerging “memory system push” models.
Cooperation from both CPU and memory manufacturers is required for the full
solution.

6. Malice of Forethought: architectural solutions need to have the potential for
broad support from the programming and runtime environments. They must

33

cleanly support enhanced and unenhanced memory architectures, and provide
feedback and understanding to the application developer.

7. Continued Community Involvement: further broad-based discussion is
required to continue to understand community requirements. A “willing to
do”/”not willing to do” list from each constituency may prove a useful tool.

8. Willingness to Innovate: each of the breakout groups at MOHPC was rightly
conservative in their recommendations, which has the potential to stifle inno-
vation.

34

DISTRIBUTION:

1 Almadena Chtchelkanova, NSF, 4201 Wilson Boulevard, Arlington,
VA 22230

1 Bill Harrod, DARPA/IPTO, 3701 Fairfax Drive, Arlington, VA
22203-1714

1 Fred Johnson, DOE Office of Science, SC-21, Germantown Building,
1000 Independence Ave SW, Washington, DC 20585

1 Bob Meisner, NNSA, NA-121.2, Forrestal Building, 1000 Indepen-
dence Ave SW, Washington, DC 20585

1 MS 1322 John Aidun, 1435

1 MS 1319 Jim Ang, 1422

1 MS 1319 Brian Barrett, 1423

1 MS 1319 Ron Brightwell, 1423

1 MS 1320 Scott Collis, 1414

1 MS 1319 Doug Doerfler, 1422

1 MS 1322 Sudip Dosanjh, 1420

1 MS 1319 K. Scott Hemmert, 1422

1 MS 1320 Mike Heroux, 1416

1 MS 1318 Bruce Hendrickson, 1410

1 MS 9151 Howard Hirano, 8960

1 MS 9158 Curtis Janssen, 8961

1 MS 1319 Sue Kelly, 1423

1 MS 0801 Rob Leland, 9300

1 MS 0321 John Mitchner, 1430

1 MS 0321 James Peery, 1400

1 MS 1319 Neil Pundit, 1420

1 MS 1316 Danny Rintoul, 1409/1412

1 MS 1319 Arun Rodrigues, 1423

35

1 MS 0822 David Rogers, 1424

1 MS 1318 Suzanne Rountree, 1415

1 MS 1318 David Womble, 1540

2 MS 9018 Central Technical Files, 8944

2 MS 0899 Technical Library, 4536

36

v1.27

