
Applications Working Group
MOPHC

Mike Heroux (co-chair)
Jeff Vetter (co-chair)

Bob Lucas
Bronson Messer
John Cieslewicz

Harvey Wasserman
John Daly

Mike Parker

2

Charge Questions
 What would you do with ‘smarter’ memory?
 What is wrong with the other groups? What should

they do about it?
 How do we deal with existing code? How do we

support applications that current architectures do
not support? How do we transition from old to new?

 Other groups
– Architectures
– Programming models/software

 Random comments
– What is a ‘smarter memory?’
– Should applications developers care if the memory is based on

CMOS, carbon nanotubes, springs, or whatever?

3

Motifs: Sparse methods
 Structure grids

– Non-unit stride:
• Iterating over different dimensions.
• Visiting different slices.

 Unstructured grids:
– Gather/scatter:

• Iterating w/ indirect references.
• Irregular connectivity patterns.

 Spectral (FFTs)
– Non-unit strides

 Adaptive (structured and unstructured)
– Time varying data structures.

4

Motif: Database/Informatics
1-touch
 Interference between simultaneous

– Heavy access to uniform array
– Irregular access random

Scratchpad memory could help: Cray-2
local memory

Similar to PDEs?

5

Motifs: Others
Graph traversal

– Reorderings
– Non-PDE graphs

Monte Carlo
Virtualization

– Indirections

6

Challenges
Performance of indirect addressing

– Level of concurrency in memory system?
Transparency of memory performance

– Automation or the tools to understand and
optimize it manually

Keep reliability above suspicion
– No silent data corruption (Contrast: Disk

systems)
Not enough memory: “30% barrier”

– Need ability to get high capacity at lower cost

7

Smart Memory (1)
 Effective use of bandwidth/power

– Every bit read should be used
– Wasted sharing; No bit left behind
– No bit in the cache that is not reused

 Scatter/gather, non-unit stride
 Predictable performance model

– Deterministic behavior
 Introspective memory

– Gives usage stats
– Memory footprint, hotspots, …

 Remote atomic memory op
– Memory transfer plus operation

 Fine grain memory synchronization
– Cray MTA – full/empty bits
– Transactional memory

8

Smarter Memory (2)
Clear, Replicate itself
DMA within memory
Garbage collection
Searches

– Look for a pattern
– Content addressable memory

Configurable memory
– Example: Runtime declarable scratchpad
– Part of variable declarations

9

Related Programming Model
Features

Expressible locality
– Example: 1-touch
– Affinity: Work and data
– Replication: ghost nodes

Portability: Language markups
– Define a scratchpad memory in your language
– Define a cam in your language

 Introspective memory: Usage stats
Performance transparency through the

programming model to the hardware

10

What we are willing to do and not do
 Willing to do

– Add directives/pragmas
– Willing to evolve to address system design changes

 Not willing to do
– Abandon existing code base
– Adopt non-portable programming features

• Exception: specialized kernels

 Reluctant to
– Use brand new languages to address these problems

(unless we can introduce it incrementally)
– Abandon current programming models

• Multi-level programming models MPI+OpenMP

Bonus Slides

12

Dwarfs (so far) – LBL, UCB
 Finite State Machine
 Combinatorial Logic
 Graph Traversal
 Structured Grids
 Dense Linear

Algebra
 Sparse Linear

Algebra
 Spectral Methods

(FFT)
 Dynamic

programming

 N-Body methods
 MapReduce
 Back-track/branch

and bound
 Graphical Model

Inference
 Unstructured Grids

 Others ???

13

Some ORNL/DOE Codes

14

Random
None cacheable memory

– Configurable caches
Gathers, scatters
Readonly
Synchronization mechanisms
Remote, atomic memory operations
Memory to memory operations
Efficient use of existing bandwidth

– Transferring only the data that you plan to use

