
Applications Working Group 
MOPHC

Mike Heroux (co-chair)
Jeff Vetter (co-chair)

Bob Lucas
Bronson Messer
John Cieslewicz

Harvey Wasserman
John Daly

Mike Parker

With Architecture 
Comments!!!



2

Charge Questions
 What would you do with ‘smarter’ memory?
 What is wrong with the other groups? What 

should they do about it?
 How do we deal with existing code? How do we 

support applications that current architectures 
do not support? How do we transition from old 
to new?

 Other groups
– Architectures
– Programming models/software

 Random comments
– What is a ‘smarter memory?’
– Should applications developers care if the memory is 

based on CMOS, carbon nanotubes, springs, or whatever?



3

Motifs: Sparse methods
 Structure grids

– Non-unit stride: 
• Iterating over different dimensions.
• Visiting different slices.

 Unstructured grids:
– Gather/scatter: 

• Iterating w/ indirect references.
• Irregular connectivity patterns.

 Spectral (FFTs)
– Non-unit strides

 Adaptive (structured and unstructured)
– Time varying data structures.



4

Motif: Database/Informatics
1-touch
 Interference between simultaneous

– Heavy access to uniform array
– Irregular access random

Scratchpad memory could help: 
Cray-2 local memory

Similar to PDEs?

What sorts of hints can you give us?
Something similar in Itanium
Should be doable. Could it be done in the disk? Information 
could be added to TLB, file, data object, by address space, or 
ISA? Opcode may be most universal.

• Saving the state is costly.
• Resource contention issues.
• Cache “hold on to this” hinting 
easier.
• What do you want to do with it? 
Naming easier?, higher bandwidth?, 
guaranteed timing? Lower latency?
• Adds a new namespace
• Can we provide this with other 
memory enhancements?
• Portability



5

Motifs: Others
Graph traversal

– Reorderings
– Non-PDE graphs

Monte Carlo
Virtualization

– Indirections



6

Challenges
Performance of indirect addressing

– Level of concurrency in memory system?
Transparency of memory 

performance
– Automation or the tools to understand 

and optimize it manually
Keep reliability above suspicion

– No silent data corruption (Contrast: Disk 
systems)

Not enough memory: “30% barrier”
– Need ability to get high capacity at lower 

If in the MC: 
• How deal with Virtual memory 
and still allow protection?
•Does the programmer ensure it is 
on this MC? (if multiple MCs)



7

Smart Memory (1)
 Effective use of bandwidth/power

– Every bit read should be used
– Wasted sharing; No bit left behind
– No bit in the cache that is not reused

 Scatter/gather, non-unit stride
 Predictable performance model

– Deterministic behavior
 Introspective memory

– Gives usage stats
– Memory footprint, hotspots, …

 Remote atomic memory op
– Memory transfer plus operation

 Fine grain memory synchronization
– Cray MTA – full/empty bits
– Transactional memory



8

Smarter Memory (2)
Clear, Replicate itself
DMA within memory
Garbage collection
Searches

– Look for a pattern
– Content addressable memory

Configurable memory
– Example: Runtime declarable scratchpad
– Part of variable declarations

Good ideas, but hard to do 
with multiple MCs, 
multiple address spaces



9

Related Programming Model 
Expressible locality

– Example: 1-touch
– Affinity: Work and data
– Replication: ghost nodes

Portability: Language markups
– Define a scratchpad memory in your 

language
– Define a cam in your language

 Introspective memory: Usage stats
Performance transparency through 

the programming model to the 
hardware

Intersting...



10

What we are willing to do and 
 Willing to do

– Add directives/pragmas
– Willing to evolve to address system design 

changes
 Not willing to do

– Abandon existing code base
– Adopt non-portable programming features

• Exception: specialized kernels
 Reluctant to

– Use brand new languages to address these 
problems (unless we can introduce it 
incrementally)

– Abandon current programming models
•  Multi-level programming models MPI+OpenMP

May have to accept emulation.
Argues for standards.

Unneeded. FORTRAN 
does it all. :-)



Bonus Slides



12

Dwarfs (so far) – LBL, UCB
 Finite State 

Machine
 Combinatorial 

Logic
 Graph Traversal
 Structured Grids
 Dense Linear 

Algebra
 Sparse Linear 

Algebra
 Spectral Methods 

(FFT)

 N-Body methods
 MapReduce
 Back-track/branch 

and bound
 Graphical Model 

Inference
 Unstructured Grids

 Others ???



13

Some ORNL/DOE Codes



14

Random
None cacheable memory

– Configurable caches
Gathers, scatters
Readonly
Synchronization mechanisms
Remote, atomic memory operations
Memory to memory operations
Efficient use of existing bandwidth

– Transferring only the data that you plan 
to use


