
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Architecture Breakout

Summary



What are the Metrics?
What is “smart” memory?

•Capacity, Bandwidth, latency
–Address BW vs Data BW

•Effective
–Are we wasting the bits we transfer? Access?
–Overhead (ratio of address to data)

•Also “per pin” and “per picojoule”
•Cost of movement vs. cost of compute
•Complexity of access command
•Meta-information in the data

–Full/Empty, Forwarding, exception, notification



Issues & Problems
•Capacity (Bytes/pin) – it has flatlined
•Multicore Cores 

–Need more BW (At least linear with cores?)
–Cache/Open Row pollution (interference, size/core)

•Power
–too much
–power scaling with bandwidth
–power wasted (array to open row, Open Row to pins)
–power modes unused
–refresh is inefficient

•Lack of hints/semantics for SW to talk to 
MC



Issues (Cont.)
•Affinity: Processor to Memory mapping
•Scatter/Gather to/from network, as well as 
processor

•How do we export translations to large numbers 
of address spaces

•TLB Reach is flat (entries and page size)
–TLB specify non-contiguous pages

•How does FLASH fit in (as a first class citizen)
–Move memory controller out of the FLASH (Dean 
solved this)

–Or other memories…
•Pin limitation
•Page migration



Proposals
1. “Smarter” Memory controller & SW interface
2. Radically more concurrency in memory system 
3. New level/part of memory hierarchy (Non Volatile, 

denser than DRAM)
4. Improve TLB reach (superpages, OS group doing it 

wrong)
5. Scratchpad memory or lockable cache (for libraries, 

app people would just mess it up)
6. Partial row activation using posted CAS (RLDRAM 

does this)
7. Direct optics to the memory
8. ECC to protect the address (or other protection)
9. Tagged memory



1. Smart Memory controller 
& SW interface

•Multiple modes
–Introspection & prediction
–Explicit control (e.g. CELL 

DMA)
•Capabilities

–Statistics gathering (MC 
Performance counters)

–Controller has multiple 
threads of control

–Controller is Multicore and 
thread aware to allow better 
scheduling decisions

–Reference hints
–I/O Scratchpad for staging 

data

–Cross compatible emulation 
library

–Prefetch or DMA (but fancy)
• Irregular access patterns
•Regular stride
•Across and through 
hierarchy

•As instruction or property of 
a page/region?

•Async. notification
•DMA command lists



2. Radically more concurrency 
in the memory system 

• Options
1. More, slower, narrower, deeper chan. off MC

• FBDIMM-like but fewer pins/traces
• # channels > # cores
• Cheaper, more capacity, less power
• More latency
• Need more memory controllers

2. More banks in device

CPU
24 24

CPU

4 4 4

4 4 4

4 4 4

Option 1 •••



Proposals
1. “Smarter” Memory controller & SW interface
2. Radically more concurrency in memory system 
3. New level/part of memory hierarchy (Non Volatile, 

denser than DRAM)
4. Improve TLB reach (superpages, OS group doing it 

wrong)
5. Scratchpad memory or lockable cache (for libraries, 

app people would just mess it up)
6. Partial row activation using posted CAS (RLDRAM 

does this)
7. Direct optics to the memory
8. ECC to protect the address (or other protection)
9. Tagged memory



Backup



Questions

• How would you make memory smarter?
–When is memory smarter?

• What is wrong with the other groups (prog. 
models, apps)?
–What should they do about it?

• How do we deal with existing code?
–How to introduce support for new app
–How to transition from old to new?



Issues (Cont.)
•Lack of hints/semantics for SW to talk to MC

–Cache Management 
–DRAM Row Management
–Explicit transfer / scratchpad
–Cache Management 
–DRAM Row Management
–Ability to specify access pattern

•irregular access patterns
•across and through hierarchy
•As instruction or property of a page/region?
•DMA command lists


