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Software Issues at Sc

« DARPA Study on Exascale

— Power discussion dominates all others; concurrency is the only
significant knob we have: lower clock, increase parallelism

— Power density and system power (20-200 MW)

« Summary Issues for Software

— Exascale system will require billion-way concurrency with O(1K)
cores per chip

— Departmental scale (1 PF) systems will require millions of threads

— The memory/core ratio may drop significantly

* Note: Weak Scaling at Risk!

— A new model for fault tolerant software is needed; checkpoints to

disk will be impractical

« These issues will creep into Petascale
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Two Parallel Language Questions

« What is the parallel control model?

e
e

AR
Fepr?

data parallel dynamic single program
(singe thread of control) threads multiple data (SPMD)

« What is the model for sharing/communication?

= receive
store 7 — =
load - send
shared memory message passing

—~_Implied synchronization for message passing, not shared memory __
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Sharing / Communication Models




What's Wrong with MPI Everywh

e We can run 1 MPI process per core
— This works now (for CMPs) and will work for a while

« How long will it continue working?
— 4 -8 cores? Probably. 128 - 1024 cores? Probably not.
— Depends on performance expectations -- more on this later

 What is the problem?
— Latency: some copying required by semantics

— Memory utilization: partitioning data for separate address
space requires some replication

« How big is your per core subgrid? At 10x10x10, over 1/2 of the
points are surface points, probably replicated

— Memory bandwidth: extra state means extra bandwidth

— Weak scaling: success model for the “cluster era;” will not be
for the many core era -- not enough memory per core

— Heterogeneity: MPI per CUDA thread-block?

,\ * Advantage: no new apps work; modest infrastructure
“11 work (multicore-optimized MPI)
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What about Mixed MPI and Thr

e Threads: OpenMP, PThreads,...

 Problems
—  Will OpenMP performance scale with the
number of cores / chip?
— More investment in infrastructure than MPI,
but can leverage existing technology
— Do people want two programming models?

— Doesn’t go far enough

« Thread context is alarge amount of state compared
to vectors/streams

« Op per instruction vs. 64 ops per instruction




PGAS Languages

* Global address space: thread may directly read/write remote data
* Partitioned: data is designated as local or global
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 Implementation issues:

— Distributed memory: Reading a remote array or structure is
explicit, not a cache fill

— Shared memory: Caches are allowed, but not required
* No less scalable than MPI!
.. & Permits sharing, whereas MPI rules it out!
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Sharing and Communication Mot
PGAS vs. Threads

—a

e “Shared memory” OpenMP, Threads,...
— No control over locality

=Caching (automatic management of memory
hierarchy) is critical

=Cache coherent needed (hw or sw)

e PGAS /One-sided Communication
— Control over locality, explicit movement

=Caching is not required; programmer makes
local copies and manages their consistency

=Need to read/write without bothering remote
application (progress thread, DMA)

=No cache coherent needed, except between the
network interface and procs in a node




Sharing and Communication
PGAS vs. MPI

two-sided message
message id data payload —>
one-sided put message

network
Interface

address data payload —>

« A one-sided put/get message can be handled directly by a network
interface with RDMA support
— Avoid interrupting the CPU or storing data from CPU (preposts)
» A two-sided messages needs to be matched with a receive to
identify memory address to put data
— Offloaded to Network Interface in networks like Quadrics
— Need to download match tables to interface (from host)
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Parallelism / Control Models




To Virtualize or Not

 The fundamental question facing in parallel
programming models is:

What should be virtualized?

« Hardware has finite resources
— Processor count is finite
— Registers count is finite
— Fast local memory (cache and DRAM) size is finite
— Links in network topology are generally < n?

* Does the programming model (language+libraries)
expose this or hide it?

— E.g., one thread per core, or many?

« Many threads may have advantages for load balancing, fault
tolerance and latency-hiding

« But one thread is better for deep memory hierarchies
. * How to get the most out of your machine?
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Avoid Global Synchroniz

Cholesky -- 8-way Dual Opteron UPC vs.
ScaLAPACK
async. 2d blocking 3 m ScaLAPACK
LAPACK + Th.
BLAS m UPC
60
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*Bulk-synchronous programming has too much synchronization

«Bad for performance

e Linpack performance
*On Multicore / SMP (left, Dongarra et al) and distributed memory (right, UPC)

f"‘\loAlso bad direction for fault tolerance
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Lessons Learned

e One-sided communication is faster than 2-sided
— FFT example shown previous

 Global address space can ease programming
— Dynamic scheduling can tolerate latencies
— More adaptive and easier to use (fewer knobs)

 Principled scheduling that takes into account
— Critical Path, Memory use, Cache, etc.

« Combination of dynamic loc balancing with
locality control has new challenges

— Previous work solve load balancing (Cilk) or locality
(MPI) but not both together

 Current PGAS languages are not the final answe




Autotuning: Extreme Performan
Programming

 Automatic performance tuning
— Use machine time in place of human time for tuning
— Search over possible implementations
— Use performance models to restrict search space

« Programmers should write programs to generate code, not the
code itself

 Autotuning finds a good performance solution be heuristics or
exhaustive search
— Perl script generates many versions
— Generate SIMD-optimized kernels
— Autotuner anlyzes/runs kernels
— Uses search and heuristics
« PERI SciDAC is including some of these ideas into compilers and

domain-specific code generators libraries, e.g., OSKI for sparse
matrices

— Multicore optimizations not yet in OSKI release
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MPI vs. Threads
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LBMHD: Structure Grid Applica

Top 40% at T = 40k

e Plasma turbulence simulation

« Two distributions: b
— momentum distribution (27 components)
— magnetic distribution (15 vector componeni .
« Three macroscopic quantities: e |
— Density |
— Momentum (vector)
— Magnetic Field (vector)
« Mustread 73 doubles, and update(write) 7!
space
 Requires about 1300 floating point operations per point in space
 Justover 1.0 flops/byte (ideal)
 No temporal locality between points in space within one time step
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e Joint work with Sam Williams, Lenny Oliker, John Shalf, and Jonathan Carter
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Stencil Code Overview

void stencil3d(double A[], double B[], int nx, int ny, int nz) {

for all grid indices in x-dim {
for all grid indices in y-dim {
for all grid indices in z-dim {
B[center] = SO* A[center] +
S1*(A[ ] + A[bottom] +
A[left] + A[right] +
A[front] + A[back]);

}
} /
« 3D, 7-point, Jacobi iteration on a 2562 grid

 Flop:Byte Ratio:
— 0.33 (write allocate), 0.5 (Ideal)
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Naive Stencil Performance
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Fully-Tuned Performan
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Stencil Results
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_PGAStHarnguages + Autotuning for
DMA Multicore

« PGAS languages are a good fit to shared memory
machines, including multicore

— Global address space implemented as reads/writes

— Also may be exploited for processor with explicit local store
rather than cache, e.g., Cell, GPUs,...

« Open question in architecture
— Cache-coherence shared memory
— Software-controlled local memory (or hybrid)
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> Shared
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Compilers vs. Libraries

« Can bedonein libraries
— Dense matrix operations: can be done in the library
— FFTs and other spectral transforms
 Require extraordinary analysis
— Sparse matrices: would need a new language
 Feasible to analyze; cannot be captured in a
traditional library

— Stencils on structured grids (LBMD and Heat)
— Basic set of optimizations stay the same

— Should be done in a compiler (with or without a new
language)

Use an approach that matches the problem




