Programming Models: Opportunities
and Challenges for Scalable
Applications

Kathy Yelick
NERSC Director, LBNL
EECS Professor, U.C. Berkeley

Software Issues at Sc

« DARPA Study on Exascale

— Power discussion dominates all others; concurrency is the only
significant knob we have: lower clock, increase parallelism

— Power density and system power (20-200 MW)

« Summary Issues for Software

— Exascale system will require billion-way concurrency with O(1K)
cores per chip

— Departmental scale (1 PF) systems will require millions of threads

— The memory/core ratio may drop significantly

* Note: Weak Scaling at Risk!

— A new model for fault tolerant software is needed; checkpoints to

disk will be impractical

« These issues will creep into Petascale

-

/'\l /\
QN

DRAM component density IS doub

every 3 years

Evolution of memory density

10000
1000 2
'E- :*j':k"15411 2X/3yrs
S .
<100 -
2 -
= 4X/3yrs
= 10 —
r.-..
1 ‘-’ .. | | | | |
1985 1980 1995 2000 2005 2010
Year mass production starts
§SR¢WBM
MJB Sequoia Programming Models

2015

¢ 1Mb
|| 4Mb
16Mb
64Mb
x 128Mb
o 256Mb
0512Mb
A1GDb
opich
4Gh

Two Parallel Language Questions

« What is the parallel control model?

e
e

AR
Fepr?

data parallel dynamic single program
(singe thread of control) threads multiple data (SPMD)

« What is the model for sharing/communication?

= receive
store 7 — =
load - send
shared memory message passing

—~_Implied synchronization for message passing, not shared memory __

rrrrrrr ‘m‘

Sharing / Communication Models

What's Wrong with MPI Everywh

e We can run 1 MPI process per core
— This works now (for CMPs) and will work for a while

« How long will it continue working?
— 4 -8 cores? Probably. 128 - 1024 cores? Probably not.
— Depends on performance expectations -- more on this later

 What is the problem?
— Latency: some copying required by semantics

— Memory utilization: partitioning data for separate address
space requires some replication

« How big is your per core subgrid? At 10x10x10, over 1/2 of the
points are surface points, probably replicated

— Memory bandwidth: extra state means extra bandwidth

— Weak scaling: success model for the “cluster era;” will not be
for the many core era -- not enough memory per core

— Heterogeneity: MPI per CUDA thread-block?

,\ * Advantage: no new apps work; modest infrastructure
“11 work (multicore-optimized MPI)

:::::::::::

What about Mixed MPI and Thr

e Threads: OpenMP, PThreads,...

 Problems
— Will OpenMP performance scale with the
number of cores / chip?
— More investment in infrastructure than MPI,
but can leverage existing technology
— Do people want two programming models?

— Doesn’t go far enough

« Thread context is alarge amount of state compared
to vectors/streams

« Op per instruction vs. 64 ops per instruction

PGAS Languages

* Global address space: thread may directly read/write remote data
* Partitioned: data is designated as local or global

" |
(&) i
® i
Q i
7)) i
3 ‘\
o
: /
S I
(1+]
©
5 g: /
S
PO p1 pn

 Implementation issues:

— Distributed memory: Reading a remote array or structure is
explicit, not a cache fill

— Shared memory: Caches are allowed, but not required
* No less scalable than MPI!
.. & Permits sharing, whereas MPI rules it out!

|||‘

Sharing and Communication Mot
PGAS vs. Threads

—a

e “Shared memory” OpenMP, Threads,...
— No control over locality

=Caching (automatic management of memory
hierarchy) is critical

=Cache coherent needed (hw or sw)

e PGAS /One-sided Communication
— Control over locality, explicit movement

=Caching is not required; programmer makes
local copies and manages their consistency

=Need to read/write without bothering remote
application (progress thread, DMA)

=No cache coherent needed, except between the
network interface and procs in a node

Sharing and Communication
PGAS vs. MPI

two-sided message
message id data payload —>
one-sided put message

network
Interface

address data payload —>

« A one-sided put/get message can be handled directly by a network
interface with RDMA support
— Avoid interrupting the CPU or storing data from CPU (preposts)
» A two-sided messages needs to be matched with a receive to
identify memory address to put data
— Offloaded to Network Interface in networks like Quadrics
— Need to download match tables to interface (from host)

-

ml Joint work with Dan Bonachea

Parallelism / Control Models

To Virtualize or Not

 The fundamental question facing in parallel
programming models is:

What should be virtualized?

« Hardware has finite resources
— Processor count is finite
— Registers count is finite
— Fast local memory (cache and DRAM) size is finite
— Links in network topology are generally < n?

* Does the programming model (language+libraries)
expose this or hide it?

— E.g., one thread per core, or many?

« Many threads may have advantages for load balancing, fault
tolerance and latency-hiding

« But one thread is better for deep memory hierarchies
. * How to get the most out of your machine?

A
e I

Avoid Global Synchroniz

Cholesky -- 8-way Dual Opteron UPC vs.
ScaLAPACK
async. 2d blocking 3 m ScaLAPACK
LAPACK + Th.
BLAS m UPC
60
0
Q
S 40 -
[
O
20 -
2500 5000 7500 10000 12500 15000
problem size 0 -
2x4 proc grid 4x4 proc grid

*Bulk-synchronous programming has too much synchronization

«Bad for performance

e Linpack performance
*On Multicore / SMP (left, Dongarra et al) and distributed memory (right, UPC)

f"‘\loAlso bad direction for fault tolerance

dddddns ||||

Lessons Learned

e One-sided communication is faster than 2-sided
— FFT example shown previous

 Global address space can ease programming
— Dynamic scheduling can tolerate latencies
— More adaptive and easier to use (fewer knobs)

 Principled scheduling that takes into account
— Critical Path, Memory use, Cache, etc.

« Combination of dynamic loc balancing with
locality control has new challenges

— Previous work solve load balancing (Cilk) or locality
(MPI) but not both together

 Current PGAS languages are not the final answe

Autotuning: Extreme Performan
Programming

 Automatic performance tuning
— Use machine time in place of human time for tuning
— Search over possible implementations
— Use performance models to restrict search space

« Programmers should write programs to generate code, not the
code itself

 Autotuning finds a good performance solution be heuristics or
exhaustive search
— Perl script generates many versions
— Generate SIMD-optimized kernels
— Autotuner anlyzes/runs kernels
— Uses search and heuristics
« PERI SciDAC is including some of these ideas into compilers and

domain-specific code generators libraries, e.g., OSKI for sparse
matrices

— Multicore optimizations not yet in OSKI release

-

reeeeerr

|||’

0.55
0.50
0.45
0.40

w 0.35

s

o 0.30

fro

9 0.25
0.20
0.15
0.10
0.05
0.00

Naive Serial Implementatior

Intel Clovertown

Dense

Sun Niagara2 (Huron)

c

Protei
FEM-Sph

[

FEM-Can

FEM-Sphr
FEM-Cant

Tunnel
FEM-Harbo

Tunnel
FEM-Harbor

QCo

FEM-Ship

QcD
FEM-Ship

Econ

Econ

Epidem

Epidem
FEM-Accel

FEM-Accel

Circuit

Circuit
Webbase

Webbase

LP

LP

Median

|

Median

0.60
0.55
0.50
0.45
0.40

w 0.35

2

8 0.30

w

© 0.25
0.20
0.15
0.10
0.05
0.00

0.60
0.55
0.50
0.45
0.40

w 0.35
=

§0.30

w

9 0.25
0.20
0.15
0.10
0.05
0.00

AMD Opteron

IBM Cell Blade (PPE)

%

Dense

Protein
FEM-Sphr
FEM-Cant

Tunnel
FEM-Harbor

QcD
FEM-Ship

Econ

Epidem
FEM-Accel

Circuit
Webbase

LP

U C - ¥ 5 0 oc T 2 o a c
2§£:2308028s85¢8348°> s
s £33 ELos s 8P s =
A v Iisse ' a < 5 o Q
a sz = F I z os Vo =
w
- g =
w

Median

Vanilla C implementation

Matrix stored in CSR
(compressed sparse
row)

Explored compiler
options, but only the
best is presented here

x86 core delivers > 10x
the performance of a
Niagara2 thread

GFlop/s

GFlop/s

2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Naive Parallel Implementatio

Intel Clovertown

i

9 € £ & 5 0 2 < g3 ¥ o c
2555288z ¢858¢83¢8> =
s 593 sEouw a8 g g3 3
° g s = T s g < 0 % =
BE oz B Bz
w

Sun Niagara2 (Huron)

N | Wy G O O -
IR Y _— A
235085 ETE LY <
c&nsﬂnucuwgum 0
PP S50 uw2 g E g 3

-
€ ==z F T = S+ V39 =
woow o w
w

GFlop/s

GFlop/s

3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

AMD Opteron

Dense []
Protein []
FEM-Sphr []
FEM-Cant []]
Tunnel :j
FEM-Harbor []]
e e |
FEM-Ship [| |
Econ [[]
Epidem []
FEM-Accel []]
Circuit [T
Webbase []
e]
Median :D

IBM Cell Blade (PPEs)

|

W £ = ¥ = - A a c T ¥ 0 a c
2§ £ 238238583485]
Cun-s ° O o O ® =
PP S50 uw2 g E g 3
-
& ==z F T = S+ V39 =
wuw = ® e} =
wow o w
w

SPMD style
Partition by rows

Load balance by
nonzeros

N2 ~ 2.5x x86
machine

Naive Pthreads

Naive

Intel Clovertown

§x cores = 1.9x ﬁerformance

i
1\l
'{ |

15;

Sun Niagara2 (Huron)

GFlop/s

~
C.
E..
o

4x cores = 1.5x performance-

AMD Opteron

=i "x

 IBM Cell Blade (PPEs)

s = 41x performance -

GFlop/s

"Vi.;.‘ I
‘\
[

\“

4>g ;threads = 3.4x performance

Naive Parallel Implement:

SPMD style

Partition by rows

Load balance by
nonzeros

N2 ~ 2.5x x86
machine

Naive Pthreads

Naive

GFlop/s

GFlop/s

Intel Clovertown

1.4% of peak flops
29% of bandwidth

Sun Niagara2 (Huron)

«— 25% of peak flops

‘ -

~ 39% of bandwidth

GFlap/s

GFlop/s

- IBARARRHEnasa-

AMD Opteron

4% of peak flops
20% of bandwidth
HOEREEnM

_IBM Cell Blade (PPEs)

2.7% of peak flops
4% of bandwidth

SPMD style
Partition by rows

Load balance by
nonzeros

N2 ~ 2.5x x86
machine

Naive Pthreads

Naive

rrr

11.0
10.0
9.0
8.0
7.0
6.0

GFlop/s

5.0
4.0
3.0
2.0
1.0
0.0

12.0
11.0
10.0
9.0
8.0
7.0
6.0

GFlop/s

5.0
4.0
3.0
2.0
1.0
0.0

Autotuned Performance

Intel Clovertown

I II u
M — [|
--=-:.I! — B =
o o O i A S o P
v £ L 2 353 5 0 08¢ T 2 9 o
2555288285835 ¢85
3 5 9wV S 5 QUL T S E
@& s =z FI = g+ 9038
w
i z e o =
w

Sun Niagara2 (Huron)

-
|
||
c
5
=1
@
=

LP

|
oo [T
rev-snip [T]
Econ [}
epidem [__]IJ
FEM-Accel [T
circuit]|
webbase [l
T D

Dense
Protein
FEM-Sphr
FEM-Cant
Tunnel

FEM-Harbor

Median

12.0
11.0
10.0
9.0
8.0
7.0

6.0

GFlop/s

5.0
4.0
3.0
2.0
1.0
0.0

12.0
11.0
10.0
9.0
8.0
w 7.0
o 6.0
Y 5.0
4.0
3.0
2.0
1.0
0.0

(+Cell/SPE version)

AMD Opteron

FEM-Ship |]

—

Median [[[[T

Wrote a double precision
Cell/SPE version

DMA, local store blocked,
NUMA aware, etc...

Only 2x1 and larger BCOO
Only the SpMV-proper
routine changed

About 12x faster (median)
than using the PPEs alone.

+More DIMMs(opteron),
+FW fix, array padding(N2), etc...

+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naive Pthreads

Dense

Protein
FEM-Sphr

FEM-Cant

Tunnel
FEM-Harbor

QCcD
FEM-Ship

Econ

Epidem

FEM-Accel I

Circuit
Webbase

LP

Median

Naive

GFlop/s

GFlop/s

Autotuned Performance

Intel Clovertown

4% of peak flops
52% of bandwidth

Sun Niagara2 (Huron)
54% of peak flops

57% of bandwidth

GFlop/s

GFlop/s

(+Cell/SPE version)
AMD Opteron

20% of peak flops
65% of bandwidth

IBM Cell Blade (SPESs)

40% of peak flops
92% of bandwidth

7‘ +More DIMMs(opteron),
—1 +FW fix, array padding(N2), etc...

7\ +Cache/TLB Blocking

+Compression

| +SW Prefetching

| | +NUMA/Afinity

‘ Naive Pthreads

D Naive

MPI vs. Threads

Intel Clovertown AMD Opteron

” o e On x86 machines,
60 6.0 autotuned(OSKI) shared
> > memory MPICH
as Implementation rarely
g $e scales beyond 2 threads
6 50 6 3.0 o Still debugging MPI
2.5 . .
> 2o Issues on Niagara2, but
15 15 so far, it rarely scales
1.0 1.0
o H H H HHHHH H - beyond 8 threads.
0.0 c 9 O'Owcuu—égncg—:wm c
P S::2582853358° & tsasffgsgalzs- 2
BEESBRSEE ERE 3 B8E2: 88252363 g
- g = gE g & g 3
Sun Niagara2 (Huron)
7.0 1
6.5
6.0 {[M]
5.5
5.0
4.5]
Q“'O
835
& 3.0
zz Autotuned pthreads
1.5
e . Autotuned MPI
0 Naive Serial
00 L 2 g 5 0 @8 c T ¥ 9 a c
fsssie85888:i” &

LBMHD: Structure Grid Applica

Top 40% at T = 40k

e Plasma turbulence simulation

« Two distributions: b
— momentum distribution (27 components)
— magnetic distribution (15 vector componeni .
« Three macroscopic quantities: e |
— Density |
— Momentum (vector)
— Magnetic Field (vector)
« Mustread 73 doubles, and update(write) 7!
space
 Requires about 1300 floating point operations per point in space
 Justover 1.0 flops/byte (ideal)
 No temporal locality between points in space within one time step

1004
25

2.4

2.2

1.8

1.6

e Joint work with Sam Williams, Lenny Oliker, John Shalf, and Jonathan Carter

reeeeerr

|||’

GFlop/s

GFlop/s
o
o

18.0

16.0

14.0

12.0

®
o

4.0

2.0

0.0

16.0

14.0

12.0

4.0

2.0

0.0

Autotuned Performance

Intel Clovertown

3illazil

6413 12873

Sun Niagara2 (Huron)

?UHD?@HE

6473 12873

GFlop/s

4.0

2.0

0.0

18.0

16.0

14.0

12.0

GFlop/s

(Cell/SPE version)

AMD Opteron

]

1 2
6413

IBM Cell Blade®

4

1

2
12873

First attempt at cell
implementation.

VL, unrolling, reordering
fixed

Exploits DMA and double
buffering to load vectors

Straight to SIMD intrinsics.
Despite the relative
performance, Cell’'s DP

implementation severely
impairs performance

+SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naive+NUMA

ol

6413

Stencil Code Overview

void stencil3d(double A[], double B[], int nx, int ny, int nz) {

for all grid indices in x-dim {
for all grid indices in y-dim {
for all grid indices in z-dim {
B[center] = SO* A[center] +
S1*(A[] + A[bottom] +
A[left] + A[right] +
A[front] + A[back]);

}
} /
« 3D, 7-point, Jacobi iteration on a 2562 grid

 Flop:Byte Ratio:
— 0.33 (write allocate), 0.5 (Ideal)

-

] A
reeceee | il

ERKELEY LaAB

-

,/—\l /\
L’N

Naive Stencil Performance

Iptel Xeon (Clovertown) AMD Opteron (Barcelona)

8 8
7 7
6 6
“n u
¥ ra
o o
2 2
w4 w4
o o
3 3
2 | 2
0 0

Number of Cores Number of Cores

Sun Niagara? (Victoria Falls)

 For this simple code - all
° cache-based platforms show
: poor efficiency and scalability
3 « Could lead programmer to
24 believe that approaching a
; resource limit

Number of Cores

Fully-Tuned Performan

Intel Xeon (Clovertown) AMD Opteron (Barcelo

] | Optimizations

) 7 include:

)) <+ NUMA-Aware

— < Padding
< Unroll/
3 | = Reordering
— : o < Thread/
: . Cache
) i . . . Blocking
a 8 < Prefetching
< SIMDization

wn
w

i
1N
)

1.9x
3
E]
2] F =
1
')
1 2 4

Number of Cores Number of Cores

GFlops/s
H

d i

Sun Niagara? (Victoria Falls)
0 | < Cache
: « Different Bypass
' | optimizations have
.] dramatic effects on
¥ 12 5x | different
‘. aeh architectures
: 1 e Largest optimization
N — i i | | benefit seen for the
> 0 ?) — largest core count

I
| Number of Cores

Stencil Results

Single Precision Double Precision

60 1

M Clovertown M Clovertown
q) M Barcelona H Barcelona
[‘IVictoria Falls 14 | [!Victoria Falls
QO 50| mcen H Cell
C B G80
CG B G80/PCle 12
40 0
E L =10
g o
- '8
= &30 Y s
O - g i
Y 8)
2 F 6
o *
al 4
12
10
2
. (1] 0
U 300 B System Power 80 M System Power Eff
(- Efficiency i Chip Power Eff
q) 250 | ¥ Chip Power 70
Efficiency
' o
3200
[S—— %50
Y— 3 3
I I I Q 150 Q40
g g
| S =
Q $ 100 §3°
20
; 50
O o
. A o pama— p— 0
c - -— = c o] -
A : 5 s & & 3 g & = 3
] w ° 0 ©
;}l |||| 5 > 8 8 >

BERKELEY LAaB

_PGAStHarnguages + Autotuning for
DMA Multicore

« PGAS languages are a good fit to shared memory
machines, including multicore

— Global address space implemented as reads/writes

— Also may be exploited for processor with explicit local store
rather than cache, e.g., Cell, GPUs,...

« Open question in architecture
— Cache-coherence shared memory
— Software-controlled local memory (or hybrid)

T m: e e o Private on-chip
> Shared
XI5
y- on-chip

X: 7 fp
artitioned
- y: 0 P

e \W T Shared
" 11— off-chip
i“ DRAM

-

: A
reeceee | il

EII:EI(E

Compilers vs. Libraries

« Can bedonein libraries
— Dense matrix operations: can be done in the library
— FFTs and other spectral transforms
 Require extraordinary analysis
— Sparse matrices: would need a new language
 Feasible to analyze; cannot be captured in a
traditional library

— Stencils on structured grids (LBMD and Heat)
— Basic set of optimizations stay the same

— Should be done in a compiler (with or without a new
language)

Use an approach that matches the problem

