
Programming Models: Opportunities

and Challenges for Scalable

Applications

Kathy Yelick

NERSC Director, LBNL

EECS Professor, U.C. Berkeley

Software Issues at Scale

• DARPA Study on Exascale

– Power discussion dominates all others; concurrency is the only
significant knob we have: lower clock, increase parallelism

– Power density and system power (20-200 MW)

• Summary Issues for Software

– Exascale system will require billion-way concurrency with O(1K)
cores per chip

– Departmental scale (1 PF) systems will require millions of threads

– The memory/core ratio may drop significantly

• Note: Weak Scaling at Risk!

– A new model for fault tolerant software is needed; checkpoints to
disk will be impractical

• These issues will creep into Petascale

DRAM component density is doubling

every 3 years

Source: IBM
1 Mayl 2008 3Sequoia Programming Models

Two Parallel Language Questions

• What is the parallel control model?

• What is the model for sharing/communication?

 implied synchronization for message passing, not shared memory

data parallel

(singe thread of control)
dynamic

threads

single program

multiple data (SPMD)

shared memory

load

store

send

receive

message passing

Sharing / Communication Models

What’s Wrong with MPI Everywhere

• We can run 1 MPI process per core
– This works now (for CMPs) and will work for a while

• How long will it continue working?
– 4 - 8 cores? Probably. 128 - 1024 cores? Probably not.

– Depends on performance expectations -- more on this later

• What is the problem?
– Latency: some copying required by semantics

– Memory utilization: partitioning data for separate address
space requires some replication

• How big is your per core subgrid? At 10x10x10, over 1/2 of the
points are surface points, probably replicated

– Memory bandwidth: extra state means extra bandwidth

– Weak scaling: success model for the “cluster era;” will not be
for the many core era -- not enough memory per core

– Heterogeneity: MPI per CUDA thread-block?

• Advantage: no new apps work; modest infrastructure
work (multicore-optimized MPI)

What about Mixed MPI and Threads?

• Threads: OpenMP, PThreads,…

• Problems

– Will OpenMP performance scale with the

number of cores / chip?

– More investment in infrastructure than MPI,

but can leverage existing technology

– Do people want two programming models?

– Doesn’t go far enough

• Thread context is a large amount of state compared

to vectors/streams

• Op per instruction vs. 64 ops per instruction

PGAS Languages

• Global address space: thread may directly read/write remote data

• Partitioned: data is designated as local or global

G
lo

b
al

 a
d

d
re

ss
 s

p
ac

e

x: 1

y:

l: l: l:

g: g: g:

x: 5

y:

x: 7

y: 0

p0 p1 pn
• Implementation issues:

– Distributed memory: Reading a remote array or structure is
explicit, not a cache fill

– Shared memory: Caches are allowed, but not required

• No less scalable than MPI!

• Permits sharing, whereas MPI rules it out!

Sharing and Communication Models:

PGAS vs. Threads

• “Shared memory” OpenMP, Threads,…
– No control over locality

Caching (automatic management of memory
hierarchy) is critical

Cache coherent needed (hw or sw)

• PGAS / One-sided Communication
– Control over locality, explicit movement

Caching is not required; programmer makes
local copies and manages their consistency

Need to read/write without bothering remote
application (progress thread, DMA)

No cache coherent needed, except between the
network interface and procs in a node

Sharing and Communication Models:

PGAS vs. MPI

• A one-sided put/get message can be handled directly by a network
interface with RDMA support
– Avoid interrupting the CPU or storing data from CPU (preposts)

• A two-sided messages needs to be matched with a receive to
identify memory address to put data
– Offloaded to Network Interface in networks like Quadrics

– Need to download match tables to interface (from host)

address

message id

data payload

data payload

one-sided put message

two-sided message

network

 interface

memory

host

CPU

Joint work with Dan Bonachea

Parallelism / Control Models

To Virtualize or Not

• The fundamental question facing in parallel
programming models is:

 What should be virtualized?

• Hardware has finite resources
– Processor count is finite

– Registers count is finite

– Fast local memory (cache and DRAM) size is finite

– Links in network topology are generally < n2

• Does the programming model (language+libraries)
expose this or hide it?
– E.g., one thread per core, or many?

• Many threads may have advantages for load balancing, fault
tolerance and latency-hiding

• But one thread is better for deep memory hierarchies

• How to get the most out of your machine?

Avoid Global Synchronization

•Bulk-synchronous programming has too much synchronization

•Bad for performance

•Linpack performance

•On Multicore / SMP (left, Dongarra et al) and distributed memory (right, UPC)

•Also bad direction for fault tolerance

UPC vs.

ScaLAPACK

0

20

40

60

80

2x4 proc grid 4x4 proc grid

G
F
lo

p
s

ScaLAPACK

UPC

0 2500 5000 7500 10000 12500 15000

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

Cholesky -- 8-way Dual Opteron

async. 2d blocking

LAPACK + Th.
BLAS

problem size

G
fl
o
p
/
s

Lessons Learned

• One-sided communication is faster than 2-sided
– FFT example shown previous

• Global address space can ease programming
– Dynamic scheduling can tolerate latencies

– More adaptive and easier to use (fewer knobs)

• Principled scheduling that takes into account
– Critical Path, Memory use, Cache, etc.

• Combination of dynamic loc balancing with
locality control has new challenges
– Previous work solve load balancing (Cilk) or locality

(MPI) but not both together

• Current PGAS languages are not the final answer

Autotuning: Extreme Performance

Programming
• Automatic performance tuning

– Use machine time in place of human time for tuning
– Search over possible implementations
– Use performance models to restrict search space

• Programmers should write programs to generate code, not the
code itself

• Autotuning finds a good performance solution be heuristics or
exhaustive search

– Perl script generates many versions

– Generate SIMD-optimized kernels

– Autotuner anlyzes/runs kernels

– Uses search and heuristics

• PERI SciDAC is including some of these ideas into compilers and
domain-specific code generators libraries, e.g., OSKI for sparse
matrices

– Multicore optimizations not yet in OSKI release

Naïve Serial Implementation

• Vanilla C implementation

• Matrix stored in CSR
(compressed sparse
row)

• Explored compiler
options, but only the
best is presented here

• x86 core delivers > 10x
the performance of a
Niagara2 thread

IBM Cell Blade (PPE)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

Naïve Parallel Implementation

• SPMD style

• Partition by rows

• Load balance by
nonzeros

• N2 ~ 2.5x x86
machine

IBM Cell Blade (PPEs)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

Naïve Pthreads

Naïve

• SPMD style

• Partition by rows

• Load balance by
nonzeros

• N2 ~ 2.5x x86
machine

Naïve Parallel Implementation

IBM Cell Blade (PPEs)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

Naïve Pthreads

Naïve

8x cores = 1.9x performance

4x cores = 1.5x performance

64x threads = 41x performance

4x threads = 3.4x performance

• SPMD style

• Partition by rows

• Load balance by
nonzeros

• N2 ~ 2.5x x86
machine

Naïve Parallel Implementation

IBM Cell Blade (PPEs)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

Naïve Pthreads

Naïve

1.4% of peak flops

29% of bandwidth
4% of peak flops

20% of bandwidth

25% of peak flops

39% of bandwidth

2.7% of peak flops

4% of bandwidth

Autotuned Performance
(+Cell/SPE version)

• Wrote a double precision
Cell/SPE version

• DMA, local store blocked,
NUMA aware, etc…

• Only 2x1 and larger BCOO

• Only the SpMV-proper
routine changed

• About 12x faster (median)
than using the PPEs alone.

IBM Cell Blade (SPEs)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

+More DIMMs(opteron),

+FW fix, array padding(N2), etc…

+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

Autotuned Performance
(+Cell/SPE version)

IBM Cell Blade (SPEs)Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

+More DIMMs(opteron),

+FW fix, array padding(N2), etc…

+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

4% of peak flops

52% of bandwidth
20% of peak flops

65% of bandwidth

54% of peak flops

57% of bandwidth 40% of peak flops

92% of bandwidth

MPI vs. Threads

• On x86 machines,
autotuned(OSKI) shared
memory MPICH
implementation rarely
scales beyond 2 threads

• Still debugging MPI
issues on Niagara2, but
so far, it rarely scales
beyond 8 threads.

Autotuned pthreads

Autotuned MPI

Naïve Serial

Sun Niagara2 (Huron)

AMD OpteronIntel Clovertown

LBMHD: Structure Grid Application

• Plasma turbulence simulation

• Two distributions:

– momentum distribution (27 components)

– magnetic distribution (15 vector components)

• Three macroscopic quantities:

– Density

– Momentum (vector)

– Magnetic Field (vector)

• Must read 73 doubles, and update(write) 79 doubles per point in
space

• Requires about 1300 floating point operations per point in space

• Just over 1.0 flops/byte (ideal)

• No temporal locality between points in space within one time step

Joint work with Sam Williams, Lenny Oliker, John Shalf, and Jonathan Carter

Autotuned Performance
(Cell/SPE version)

• First attempt at cell
implementation.

• VL, unrolling, reordering
fixed

• Exploits DMA and double
buffering to load vectors

• Straight to SIMD intrinsics.

• Despite the relative
performance, Cell’s DP
implementation severely
impairs performance

Intel Clovertown AMD Opteron

Sun Niagara2 (Huron) IBM Cell Blade*

*collision() only

+SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA

Stencil Code Overview

void stencil3d(double A[], double B[], int nx, int ny, int nz) {
for all grid indices in x-dim {

 for all grid indices in y-dim {
 for all grid indices in z-dim {

 B[center] = S0* A[center] +

 S1*(A[top] + A[bottom] +
 A[left] + A[right] +

 A[front] + A[back]);
 }

 }
 }

}

• 3D, 7-point, Jacobi iteration on a 2563 grid

• Flop:Byte Ratio:

– 0.33 (write allocate), 0.5 (Ideal)

Naive Stencil Performance

Intel Xeon (Clovertown) AMD Opteron (Barcelona)

Sun Niagara2 (Victoria Falls)
• For this simple code - all

cache-based platforms show
poor efficiency and scalability

• Could lead programmer to
believe that approaching a
resource limit

Fully-Tuned Performance
Intel Xeon (Clovertown) AMD Opteron (Barcelona)

Sun Niagara2 (Victoria Falls)

1.9x 5.4x

12.5x

Optimizations
include:

NUMA-Aware

Padding

Unroll/
Reordering

Thread/
Cache
Blocking

Prefetching

SIMDization

Cache
Bypass• Different

optimizations have
dramatic effects on
different
architectures

• Largest optimization
benefit seen for the
largest core count

Stencil Results

Single Precision Double Precision

P
e
rf

o
rm

a
n
c
e

P
o
w

e
r

E
ff
ic

ie
n
c
y

PGAS Languages + Autotuning for

Multicore

• PGAS languages are a good fit to shared memory

machines, including multicore

– Global address space implemented as reads/writes

– Also may be exploited for processor with explicit local store

rather than cache, e.g., Cell, GPUs,…

• Open question in architecture

– Cache-coherence shared memory

– Software-controlled local memory (or hybrid)

DMA

x: 1

y:
x: 5

y:

x: 7

y: 0

Shared

partitioned

on-chip

l: m:
Private on-chip

Shared

off-chip

DRAM

Compilers vs. Libraries

• Can be done in libraries
– Dense matrix operations: can be done in the library

– FFTs and other spectral transforms

• Require extraordinary analysis
– Sparse matrices: would need a new language

• Feasible to analyze; cannot be captured in a
traditional library
– Stencils on structured grids (LBMD and Heat)

– Basic set of optimizations stay the same

– Should be done in a compiler (with or without a new
language)

Use an approach that matches the problem

