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“When will MPI-only performance be
inadequate” (on commodity clusters)?
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We have one main application

Performance is valued above ease of use, cost,
and portability

We are focused on strong (fixed-size) scaling
We (mostly) don’'t use MPI



Performance vs. Ease of Use
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Why we (mostly) don’t use MPI

 MPI is general and easy to use but its semantics
can limit both the library developer and user

« Use communication primitives that better suit the
application and the hardware

* Considerations for multicore if you do use MPI



Message passing for iterative exchange
communication patterns

always use RDMA eager sends with no memory copies

no synchronization to make sure a receive buffer is
available

no memory registrations at send-time

light-weight (transparent) implementation using IB Verbs
and mmap (cannot implement with MPI ready-send or
MPI-2 one-sided communication)
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Time for Iterative Exchange for MPI and IB Verbs (average and 98t percentile
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How to adapt to multicore architectures?

 How do cores efficiently share cache?

— App on a single multicore node (many options
here)

* More cores per node mean more cores
share a single network interface
— App on a multicore distributed system

— Some communication-bound applications can
expect a slowdown on new hardware



Relative communication rate

Communication rate for 2 pairs, 4 pairs, and 8 pairs, relative to 1 pair
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Multicore: Avoid having all cores
communicate off-node simultaneously

* Hybrid MPI-Threads

— Many non-transparent issues that limit speedups,
including serialization of communication

— Must be aware of which cores share sockets and
which cores share cache
* lock threads to cores (sched_setaffinity)

 assign related threads to cores that share cache
(Linux: /sys/devices/system/cpu)

» 30-50% improvement in application, but MPI-only still gives
better or comparable performance

— Profitable when there is an algorithmic advantage to
using these two levels of parallelism

— Is any better performance possible from new hybrid
programming models? Cores cooperating on data in
cache in pipelined fashion?



Multicore: Avoid having all cores
communicate off-node simultaneously

* Develop new or rediscover algorithms that can
stage their communications so that not all cores
on a node need to communicate simultaneously

— one code runs two similar simulations simultaneously
* Organize communication so that off-node

communication is overlapped with on-node
communication

—

-




More transparent systems and tools will help
users optimize performance

(for users willing to work for it),
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Future Non-MPI| Apps”?

* On commondity clusters

* On specialized hardware (incl. Cell, GPUs)

— Specialized hardware for molecular dynamics

- Heterogeneous (many types of cores on a chip)

« Four main communication mechanisms between different
types of cores and memory
* Main mechanism is a DMA engine between SRAM on a

Tensilica core and all other computational cores on all nodes
— General purpose hardware with no caches but fast
local store managed by the user/compiler; thin/few
interfaces across the network stack



Summary

 MPI vs. Specialized communication libraries

— specialization gives up to 25% overall improvement in
our application

— we still use MPI collectives
— MPI| implementations are always getting better

* In multicore case, cores must efficiently share the
network interface (and efficiently share cache)

— need algorithms where not all cores communicate
simultaneously

— overlap off-node and on-node communication
* Transparent systems and tools?
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