
Panel on Non-MPI Applications

Edmond Chow
D. E. Shaw Research

Sandia Scalable Applications Workshop
June 3-5, 2008

“When will MPI-only performance be
inadequate”

(on commodity clusters)?

•

We have one main application
•

Performance is valued above ease of use, cost,
and portability

•

We are focused on strong (fixed-size) scaling
•

We (mostly) don’t use MPI

High

Performance Ease of Use

MPI-only

Performance vs. Ease of Use

High

Performance

High
Ease of Use

MPI-only
Low

Performance

Low
Ease of Use

Why we (mostly) don’t use MPI

•

MPI is general and easy to use but its semantics
can limit both the library developer and user

•

Use communication primitives that better suit the
application and the hardware

•

Considerations for multicore if you do use MPI

Message passing for iterative exchange
communication patterns

•

always use RDMA eager sends with no memory copies
•

no synchronization to make sure a receive buffer is
available

•

no memory registrations at send-time
•

light-weight (transparent) implementation using IB Verbs
and mmap (cannot implement with MPI ready-send or
MPI-2 one-sided communication) ‏

Buf A

Buf B

Buf A

Buf B

Buf A

Buf B

Buf A

Buf B

Iteration 1,3,5,… Iteration 2,4,6,…

Processor 0 Processor 1 Processor 0 Processor 1

Time for Iterative Exchange for MPI and IB Verbs (average and 98th

percentile)

Timing distribution is
much narrower for IB
Verbs implementation

How to adapt to multicore architectures?

•

How do cores efficiently share cache?
–

App on a single multicore node (many options
here) ‏

•

More cores per node mean more cores
share a single network interface
–

App on a multicore distributed system

–

Some communication-bound applications can
expect a slowdown on new hardware

Multicore: Avoid having all cores
communicate off-node simultaneously

•

Hybrid MPI-Threads
–

Many non-transparent issues that limit speedups,
including serialization of communication

–

Must be aware of which cores share sockets and
which cores share cache

•

lock threads to cores (sched_setaffinity)‏
•

assign related threads to cores that share cache
(Linux: /sys/devices/system/cpu) ‏

•

30-50% improvement in application, but MPI-only still gives
better or comparable performance

–

Profitable when there is an algorithmic advantage to
using these two levels of parallelism

–

Is any better performance possible from new hybrid
programming models? Cores cooperating on data in
cache in pipelined fashion?

Multicore: Avoid having all cores
communicate off-node simultaneously

•

Develop new or rediscover algorithms that can
stage their communications so that not all cores
on a node need to communicate simultaneously
–

one code runs two similar simulations simultaneously

•

Organize communication so that off-node
communication is overlapped with on-node
communication

More transparent systems and tools will help
users optimize performance

(for users willing to work for it) ‏

Simulation using
OpenMPI where
memory is used
for intra-node
communication

Future Non-MPI Apps?

•

On commondity clusters
•

On specialized hardware (incl. Cell, GPUs)
–

Specialized hardware for molecular dynamics

•

Heterogeneous (many types of cores on a chip) ‏
•

Four main communication mechanisms between different
types of cores and memory

•

Main mechanism is a DMA engine between SRAM on a
Tensilica core and all other computational cores on all nodes

–

General purpose hardware with no caches but fast
local store managed by the user/compiler; thin/few
interfaces across the network stack

Summary

•

MPI vs. Specialized communication libraries
–

specialization gives up to 25% overall improvement in
our application

–

we still use MPI collectives
–

MPI implementations are always getting better

•

In multicore case, cores must efficiently share the
network interface (and efficiently share cache)
–

need algorithms where not all cores communicate
simultaneously

–

overlap off-node and on-node communication
•

Transparent systems and tools?

	�Panel on Non-MPI Applications��
	“When will MPI-only performance be inadequate” (on commodity clusters)?
	Performance vs. Ease of Use
	Why we (mostly) don’t use MPI
	Message passing for iterative exchange communication patterns
	Slide Number 6
	How to adapt to multicore architectures?
	Slide Number 8
	Multicore: Avoid having all cores communicate off-node simultaneously
	Multicore: Avoid having all cores communicate off-node simultaneously
	More transparent systems and tools will help users optimize performance �(for users willing to work for it)‏
	Future Non-MPI Apps?
	Summary

