Panel on Non-MPI Applications

Edmond Chow
D. E. Shaw Research

Sandia Scalable Applications Workshop
June 3-5, 2008



“When will MPI-only performance be
inadequate” (on commodity clusters)?

High
Performance Ease of Use

4#’

MPI-only

We have one main application

Performance is valued above ease of use, cost,
and portability

We are focused on strong (fixed-size) scaling
We (mostly) don’'t use MPI



Performance vs. Ease of Use

High
Performance él
MPI-only
Low
Performance

Low High
Ease of Use Ease of Use



Why we (mostly) don’t use MPI

 MPI is general and easy to use but its semantics
can limit both the library developer and user

« Use communication primitives that better suit the
application and the hardware

* Considerations for multicore if you do use MPI



Message passing for iterative exchange
communication patterns

always use RDMA eager sends with no memory copies

no synchronization to make sure a receive buffer is
available

no memory registrations at send-time

light-weight (transparent) implementation using IB Verbs
and mmap (cannot implement with MPI ready-send or
MPI-2 one-sided communication)

Processor 0 Processor 1 Processor O Processor 1
Buf A >< Buf A Buf A >< Buf A
Buf B Buf B Buf B Buf B

lteration 1,3,5,... lteration 2,4,6,...




Time (us)

10

10

-
o

10

Time for Iterative Exchange for MPI and IB Verbs (average and 98t percentile

4
rrrrrTg T L | T T T LI | T T T T
————— MPI max
MPI ave
————— IB max
IB ave
3_
2_
1
N [ Timing distribution is
eI _ much narrower for IB
Verbs implementation
D 1 |||||||| 1 |||||||| 1 1 ||||||| 1 |||||||| 1 1 ||||||| 1 |||||||| 1 1 1
10" 10’ 10° 10" 10" 10° 10°

Message size (bytes)



How to adapt to multicore architectures?

 How do cores efficiently share cache?

— App on a single multicore node (many options
here)

* More cores per node mean more cores
share a single network interface
— App on a multicore distributed system

— Some communication-bound applications can
expect a slowdown on new hardware



Relative communication rate

Communication rate for 2 pairs, 4 pairs, and 8 pairs, relative to 1 pair

1 ! N 1T R R ror T T rooT T rTTTT T

0 1 1 1 L1111 I 1 1 1 L1111 I 1 1 1 L1111 | 1 1 1 L1111 | 1 1 1 L1111 I 1 1 1 L1111 I 1 1 1
10 10’ 10° 10° 10" 10 10°
Message size (bytes)



Multicore: Avoid having all cores
communicate off-node simultaneously

* Hybrid MPI-Threads

— Many non-transparent issues that limit speedups,
including serialization of communication

— Must be aware of which cores share sockets and
which cores share cache
* lock threads to cores (sched_setaffinity)

 assign related threads to cores that share cache
(Linux: /sys/devices/system/cpu)

» 30-50% improvement in application, but MPI-only still gives
better or comparable performance

— Profitable when there is an algorithmic advantage to
using these two levels of parallelism

— Is any better performance possible from new hybrid
programming models? Cores cooperating on data in
cache in pipelined fashion?



Multicore: Avoid having all cores
communicate off-node simultaneously

* Develop new or rediscover algorithms that can
stage their communications so that not all cores
on a node need to communicate simultaneously

— one code runs two similar simulations simultaneously
* Organize communication so that off-node

communication is overlapped with on-node
communication

—

-




More transparent systems and tools will help
users optimize performance

(for users willing to work for it),

160

140

120

100

80

60

simulation ra

Simulation using

40 - OpenMPI where -
memory is used
201 for intra-node

communication

| | | | | | | |
0 50 100 150 200 250 300 350 400 450
simulated time in some units



Future Non-MPI| Apps”?

* On commondity clusters

* On specialized hardware (incl. Cell, GPUs)

— Specialized hardware for molecular dynamics

- Heterogeneous (many types of cores on a chip)

« Four main communication mechanisms between different
types of cores and memory
* Main mechanism is a DMA engine between SRAM on a

Tensilica core and all other computational cores on all nodes
— General purpose hardware with no caches but fast
local store managed by the user/compiler; thin/few
interfaces across the network stack



Summary

 MPI vs. Specialized communication libraries

— specialization gives up to 25% overall improvement in
our application

— we still use MPI collectives
— MPI| implementations are always getting better

* In multicore case, cores must efficiently share the
network interface (and efficiently share cache)

— need algorithms where not all cores communicate
simultaneously

— overlap off-node and on-node communication
* Transparent systems and tools?



	�Panel on Non-MPI Applications��
	“When will MPI-only performance be inadequate” (on commodity clusters)?
	Performance vs. Ease of Use
	Why we (mostly) don’t use MPI
	Message passing for iterative exchange communication patterns
	Slide Number 6
	How to adapt to multicore architectures?
	Slide Number 8
	Multicore: Avoid having all cores communicate off-node simultaneously
	Multicore: Avoid having all cores communicate off-node simultaneously
	More transparent systems and tools will help users optimize performance �(for users willing to work for it)‏
	Future Non-MPI Apps?
	Summary

