
Parallelism for the Very Large and Very Small

Matthew Knepley

Mathematics and Computer Science Division
Argonne National Laboratory

Scientific Libraries: MPI & Multicore Issues and Plans
Sandia CSRI Workshop

Bishop’s Lodge, NM
June 3, 2008

M. Knepley (ANL) Parallelism CSRI ’08 1 / 17



MPI Problems

Where are the problems for MPI?

Very small Very Large

M. Knepley (ANL) Parallelism CSRI ’08 2 / 17



MPI Problems

Where are the problems for MPI?

Very small

Very Large

M. Knepley (ANL) Parallelism CSRI ’08 2 / 17



MPI Problems

Where are the problems for MPI?

Very small Very Large

M. Knepley (ANL) Parallelism CSRI ’08 2 / 17



Multicore Parallelism

Outline

1 Multicore Parallelism

2 Multiprocessor Parallelism

3 Conclusion

M. Knepley (ANL) Parallelism CSRI ’08 3 / 17



Multicore Parallelism

Very Small

M. Knepley (ANL) Parallelism CSRI ’08 4 / 17



Multicore Parallelism

Very Small

M. Knepley (ANL) Parallelism CSRI ’08 4 / 17



Multicore Parallelism

Code Generation

Big Idea: Code Generation

Compile time examples
Dense linear algebra
Digital Signal Processing
FEM Accumulation/Assembly
Model coupling

Runtime support
Inspector-Executor
PGAS
Libraries, if written correctly, can be oblivious

M. Knepley (ANL) Parallelism CSRI ’08 5 / 17



Multicore Parallelism

Code Generation

Big Idea: Code Generation

Compile time examples
Dense linear algebra
Digital Signal Processing
FEM Accumulation/Assembly
Model coupling

Runtime support
Inspector-Executor
PGAS
Libraries, if written correctly, can be oblivious

M. Knepley (ANL) Parallelism CSRI ’08 5 / 17



Multicore Parallelism

Code Generation

Big Idea: Code Generation

Compile time examples
Dense linear algebra
Digital Signal Processing
FEM Accumulation/Assembly
Model coupling

Runtime support
Inspector-Executor
PGAS
Libraries, if written correctly, can be oblivious

M. Knepley (ANL) Parallelism CSRI ’08 5 / 17



Multicore Parallelism

Spiral

Spiral Team, http://www.spiral.net
Uses an intermediate language, SPL, and then generates C
Works by circumscribing the algorithmic domain

M. Knepley (ANL) Parallelism CSRI ’08 6 / 17

http://www.spiral.net


Multicore Parallelism

FLAME & FLASH

Robert van de Geijn, http://www.cs.utexas.edu/users/flame
FLAME is an Algorithm-By-Blocks interface
FLASH is a runtime system compatible with the FLAME interface

M. Knepley (ANL) Parallelism CSRI ’08 7 / 17

http://www.cs.utexas.edu/users/flame


Multicore Parallelism

Conclusions

Circumscribe algorithmic domain

Specialize to algorithm/hardware with code generation

Runtime decisions informed by high level information

M. Knepley (ANL) Parallelism CSRI ’08 8 / 17



Multiprocessor Parallelism

Outline

1 Multicore Parallelism

2 Multiprocessor Parallelism

3 Conclusion

M. Knepley (ANL) Parallelism CSRI ’08 9 / 17



Multiprocessor Parallelism

Very Large

M. Knepley (ANL) Parallelism CSRI ’08 10 / 17



Multiprocessor Parallelism

Very Large

M. Knepley (ANL) Parallelism CSRI ’08 10 / 17



Multiprocessor Parallelism

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL) Parallelism CSRI ’08 11 / 17



Multiprocessor Parallelism

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL) Parallelism CSRI ’08 11 / 17



Multiprocessor Parallelism

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL) Parallelism CSRI ’08 11 / 17



Multiprocessor Parallelism

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL) Parallelism CSRI ’08 11 / 17



Multiprocessor Parallelism

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL) Parallelism CSRI ’08 11 / 17



Multiprocessor Parallelism

MPICH-G2

Early Attempt at Hierarchy

Communicator hierarchy, topology depth

Only exposed to the user through Comm attributes
Still have to support flat model

Hierarchy information is buried too deep
Only really accessible in the implementation (collectives)

M. Knepley (ANL) Parallelism CSRI ’08 12 / 17



Multiprocessor Parallelism

MPICH-G2

Early Attempt at Hierarchy

Communicator hierarchy, topology depth

Only exposed to the user through Comm attributes
Still have to support flat model

Hierarchy information is buried too deep
Only really accessible in the implementation (collectives)

M. Knepley (ANL) Parallelism CSRI ’08 12 / 17



Multiprocessor Parallelism

MPICH-G2

Early Attempt at Hierarchy

Communicator hierarchy, topology depth

Only exposed to the user through Comm attributes
Still have to support flat model

Hierarchy information is buried too deep
Only really accessible in the implementation (collectives)

M. Knepley (ANL) Parallelism CSRI ’08 12 / 17



Multiprocessor Parallelism

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . . )

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation

M. Knepley (ANL) Parallelism CSRI ’08 13 / 17



Multiprocessor Parallelism

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . . )

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation

M. Knepley (ANL) Parallelism CSRI ’08 13 / 17



Multiprocessor Parallelism

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . . )

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation

M. Knepley (ANL) Parallelism CSRI ’08 13 / 17



Multiprocessor Parallelism

Sieve Overview

Completion enables a host of common operations:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL) Parallelism CSRI ’08 13 / 17



Multiprocessor Parallelism

Hierarchical Interfaces

Global/Local Dichotomy is the Heart of DD
Software interfaces do not adequately reflect this

PETSc DA is too specialized
Basically 1D methods applied to Cartesian products

PETSc Index Sets and VecScatters are too fine
User “does everything”, no abstraction

PETSc Linear Algebra (Vec & Mat) is too coarse
No access to the underlying connectivity structure

M. Knepley (ANL) Parallelism CSRI ’08 14 / 17



Multiprocessor Parallelism

Conclusions

Have concise, abstract, flexible interface for hierarchy

Need support for interaction with communication primitives

Specialized networks cannot currently implement sophisticated
tree algorithms

M. Knepley (ANL) Parallelism CSRI ’08 15 / 17



Conclusion

Outline

1 Multicore Parallelism

2 Multiprocessor Parallelism

3 Conclusion

M. Knepley (ANL) Parallelism CSRI ’08 16 / 17



Conclusion

Conclusions

Multicore performance should be improved with:
Better code generation and runtime tools

Algorithmic specificity

Multiprocess scalability should be improved with:
Explicitly hierarchical interfaces/libraries

Better interaction of algorithms with communication

M. Knepley (ANL) Parallelism CSRI ’08 17 / 17


	Multicore Parallelism
	Multiprocessor Parallelism
	Conclusion

