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Abstract

» Inference of topology and geometry of a hidden manifold
from its point data is a fundamental problem.
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Abstract

» Inference of topology and geometry of a hidden manifold
from its point data is a fundamental problem.

» We present an algorithm to compute a set of loops from
point data that approximate a shortest basis of the
homology group H; (M) of the sampled manifold .

» We also present a polynomial time algorithm for
computing a shortest basis of H;(X) for any finite
simplicial complex X embedded in an Euclidean space.
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Introduction

» A few algorithms for computing homology groups from
the point data have been developed.

» Reconstruction of the sampled space (can be costly).

» Rips, Cech or witness complexes are less constrained.
» Cycles from persistence algorithms lack geometry.

» Can we approximate a shortest set of loops generating
the homology group in polynomial time?

» 2-manifold triangulations [EW05], localized homology
[CF07,ZC08].

» We combine greedy characterization [EW05],
persistence [ELZ02,ZC05], intertwined complexes
[COO08] and new observations.
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Homology groups & generators

s H;(T):k~dimensional homology group of T under Z,.
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Homology groups & generators

s H;(T):k~dimensional homology group of T under Z,.

» The elements of H{(T) are equivalent classes [¢] of
1-dimensional cycles ¢, also called loops.

s Aset{[gi],...,]g9:]} generating H{(T) is called its basis.
» Here k = rank(Hq(T)).
» We can associate a weight w(g) with each loop ¢ in T.

» The length of a set of loops G = {¢1, ..., g1} IS given by
Len(G) = SE_ w(gs).

» A shortest basis of H;(T) is a basis with minimal length.
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Complexes

» Let P c R? be a point set. B(p, o) denotes an open d-ball
centered at p with radius «.
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s The Cech complex c*(P) is a simplicial complex where
a simplex o € C*(P) iff Vert(o), the vertices of o, are in P

and mpEVert(a)B(pa CM) # 0.
» The Rips complex R*(P) is a simplicial complex where
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Complexes

» Let P c R? be a point set. B(p, o) denotes an open d-ball
centered at p with radius «.

s The Cech complex c*(P) is a simplicial complex where
a simplex o € C*(P) iff Vert(o), the vertices of o, are in P

and mpEVert(a)B(pa CM) # 0.

» The Rips complex R*(P) is a simplicial complex where
a simplex o € R*(P) if and only if Vert(o) are within
pairwise Euclidean distance of o.

» Proposition 1 For any finite set P ¢ RY and any a > 0,
one has C2(P) C R*(P) C C*(P).
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Point set P
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Cech complex C“(P)
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Rips complex R?%(P)




Geodesics

» The vertex set P is a dense sample of a smooth manifold
M isometrically embedded in R¢.
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Geodesics

» The vertex set P is a dense sample of a smooth manifold
M isometrically embedded in R¢.

s Forp,q € M, a geodesic is a curve connecting p and ¢ in
M whose tangent derivatives have no component along
the tangent space of M.

» Geodesics with the minimum length are called
minimizing geodesics

» If p and ¢ are close enough, the minimizing geodesic is
unique, which we denote as ~(p, q).

» Minimizing geodesics induce a distance metric
dM : M x M — R.
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Euclidean and geodesic lengths

If d(p,q) < p(M)/2, one has

4d*(p, q)
3p%(M)

dar(p,q) < (1 + )d(p, q).

» Here d(p, q) is the Euclidean distance.

» p(M) is the reach defined as the minimum distance
between M and its medial axis.
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Convexity radius and sampling

» Geodesic ball: By (p,a) ={q | dy(p,q) < a}.
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Convexity radius and sampling

» Geodesic ball: B/ (p,a) = {q | dy(p,q) < al.

» Thereis a a, > 0 for each p € M where «, is the
supremum « so that B, (p, «) is convex (the minimizing
geodesics between any two points in By, (p, «) lie in

BM(pa Ck))
» Convexity radius of M: p.(M) = infyeprap.

s Pis an e-sample of M if B(z,e) N P # (0 for each x € M.
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Theorem 1

» Let M c R? be a smooth, closed manifold with [ as the
length of a shortest basis of Hy (M) and k& = rank Hy(M).
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Theorem 1

» Let M c R? be a smooth, closed manifold with [ as the
length of a shortest basis of Hy (M) and k& = rank Hy(M).

s Givenaset Pc M ofn points which is an e-sample of M

and 4e < a < mm{Q\[p M)}, one can compute a
set of loops G in O(n? + knc(n, a) ) time where

Here ¢(n, «) Is the size of the 2-skeleton of a Rips
complex R*¢(P).
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Theorem 2

» Let K be a finite simplicial complex with positive weights
on edges.
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Theorem 2

» Let K be a finite simplicial complex with positive weights
on edges.

» A shortest basis for H;(K) can be computed in O(kn*)
time where & = rank H{(K) and n = |K].
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Shortest basis

» Notice that H(K) is a vector space.
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Shortest basis

» Notice that H(K) is a vector space.

» If a set of loops £ in K contains a shortest basis, then
the greedy set G chosen from £ is a shortest basis.

» The greedy set G is an ordered set of loops {g1, ..., 9.}
satisfying the following conditions:
g1 Is the shortest loop in £ nontrivial in Hy{(K);
gi+1 1S the shortest loop in £ independent of ¢4, ..., g;.
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Canonical loop

» Let 7 be a shortest path tree in K rooted at p.
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Canonical loop

» Let 7 be a shortest path tree in £ rooted at p.

» For any two nodes ¢i1,¢2 € P, let spy(q1, ¢2) denote the
unique path from ¢; to ¢2 In 7.

» Let Er be the set of edges in T. For a non-tree edge
e = (q1,q2) € E\Er, define the canonical loop of ¢ as

T'(e) = spr(p,q1) o e ospr(ge,p).

» Let C, be the set of all canonical loops with respect to p:

C, = {T(e): e € E\Er).
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Candidate loops

» A simple cycle [ is tight if it contains a shortest path
between every pair of points in [.
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» Let G, be the greedy set chosen from C,; if C;, contains
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Candidate loops

» A simple cycle [ is tight if it contains a shortest path
between every pair of points in [.

» Proposition 2 Every loop in a shortest basis of H{(X) is
tight.

» Proposition 3 U, pC),, contains all tight loops.

» Let G, be the greedy set chosen from C,; if C;, contains
equal length loops, we break ties by a canonical
ordering.

» Proposition 4 The greedy set chosen from U,cpG, IS a
shortest basis of H (K).
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Algorithm 2

Proposition 5 CANONGEN(p, K) outputs G,.

CANONGEN(p, K)

1: Construct a shortest path tree T in K with p as the root.
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Algorithm 2

Proposition 5 CANONGEN(p, K) outputs G,.

CANONGEN(p, K)

1: Construct a shortest path tree T in K with p as the root.

2. For each non-tree edge e = (¢1,¢2) € E\Ep, let T'(e) be
the canonical loop of e.

3: Run the persistence algorithm based on the following
filtration of KC: vertices in P = Vert(K), tree edges in T,
non-tree edges in the canonical order, triangles in K.
Return the set of canonical loops associated with
k =rank(H;(K)) edges unpaired after the algorithm.

yami,
] 1
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Algorithm 3

SPGEN(K)
1: Foreach p € P = Vert(K), set G, .= CANONGEN(p, ).
2: Sort all loops in U, G, by lengths in the increasing order.
3: Let g1, ..., gxp| D€ this sorted list. Initialize G := {g1}.
4: fori:=21o k|P|, do
if |G| =k, then
Exit the for loop.
else if ¢; is independent of loops in G, then
Add g; 10 G.
end if
10: end for
11: Return G.
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Approximating a shortest basis

» We weight edges in R**(P), creating a complex K.
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Algorithm 1

Theorem 3 SHORTLOOP(P, o) computes a shortest basis for
the persistent homology group H1(C*/?(P)).

SHORTLOOP(P, o)

1: Compute two Rips complexes R (P) and R?%(P).
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the persistent homology group H1(C*/?(P)).

SHORTLOOP(P, o)

1: Compute two Rips complexes R (P) and R?%(P).

2. Let K be R**(P) where edges of R**(P)\R%(P) are
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Algorithm 1

Theorem 3 SHORTLOOP(P, o) computes a shortest basis for
the persistent homology group H1(C*/?(P)).

SHORTLOOP(P, o)

1:
2:

Compute two Rips complexes R(P) and R**(P).

Let K be R?¥(P) where edges of R?*(P)\R*(P) are
weighted infinitely.

. Compute the shortest basis for H; (K).
. Return first k& loops from the computed basis where % is

the rank of the H;(R*(P)) — Hy(R?*¥(P)).




Bounding Lengths: Proposition 1

s Let P c M be an e-sample and
4e < o < min{}/2p(M), pe(M)}.
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Bounding Lengths: Proposition 1

s Let P c M be an e-sample and
4e < o < min{}/2p(M), pe(M)}.

» Let g be a geodesic loop in M. There is a loop g in
C*/2(P) so that [h(§)] = [¢] where R is a homotopy
equivalence and Len(g) < (1 + %)Len(g).
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Proposition 2

s Let P c M be an e-sample and
4e < o < min{}/2p(M), pe(M)}.
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Proposition 2

s Let P c M be an e-sample and
4e < o < min{}/2p(M), pe(M)}.

o G ={g1,...,9x} and G’ = {g1, ..., g,,} are the generators of
a shortest basis of H; (M) and H,(K) respectively, then

we have Len(G’) < (1 + £)Len(G).
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Proposition 3

s Let P c M be an e-sample and
4e < o < min{}/2p(M), pe(M)}.
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Proposition 3

» Let P c M be an e-sample and
4e < o < min{}/2p(M), pe(M)}.
» Let G and G’ be defined as in Proposition 1.

s We have Len(G) < (1 + 33%)Len(G").
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Theorem 4

s Let P c M be an e-sample and
4e < o < min{}/2p(M), pe(M)}.
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Theorem 4

s Let P c M be an e-sample and
4e < o < min{}/2p(M), pe(M)}.

» Let G and G’ be a shortest basis of H, (M) and H,(K)
respectively.
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Theorem 4

s Let P c M be an e-sample and
4e < o < min{}/2p(M), pe(M)}.

» Let G and G’ be a shortest basis of H, (M) and H,(K)
respectively.

» We have 1 L—Len(G) < Len(G") < (1+ %)Len(G).

Aa2
3p2 (M)
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Thank youl!
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