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Abstract

Inference of topology and geometry of a hidden manifold
from its point data is a fundamental problem.

We present an algorithm to compute a set of loops from
point data that approximate a shortest basis of the
homology group H1(M) of the sampled manifold M .
We also present a polynomial time algorithm for
computing a shortest basis of H1(K) for any finite
simplicial complex K embedded in an Euclidean space.

Approximating Shortest Homology Loops – p. 2/27



Abstract

Inference of topology and geometry of a hidden manifold
from its point data is a fundamental problem.
We present an algorithm to compute a set of loops from
point data that approximate a shortest basis of the
homology group H1(M) of the sampled manifold M .

We also present a polynomial time algorithm for
computing a shortest basis of H1(K) for any finite
simplicial complex K embedded in an Euclidean space.

Approximating Shortest Homology Loops – p. 2/27



Abstract

Inference of topology and geometry of a hidden manifold
from its point data is a fundamental problem.
We present an algorithm to compute a set of loops from
point data that approximate a shortest basis of the
homology group H1(M) of the sampled manifold M .
We also present a polynomial time algorithm for
computing a shortest basis of H1(K) for any finite
simplicial complex K embedded in an Euclidean space.

Approximating Shortest Homology Loops – p. 2/27



Example

Figure 1: Shortest basis of H1(M) for the torus.
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Introduction

A few algorithms for computing homology groups from
the point data have been developed.

Reconstruction of the sampled space (can be costly).
Rips, Čech or witness complexes are less constrained.
Cycles from persistence algorithms lack geometry.
Can we approximate a shortest set of loops generating
the homology group in polynomial time?
2-manifold triangulations [EW05], localized homology
[CF07,ZC08].
We combine greedy characterization [EW05],
persistence [ELZ02,ZC05], intertwined complexes
[CO08] and new observations.

Approximating Shortest Homology Loops – p. 4/27



Introduction

A few algorithms for computing homology groups from
the point data have been developed.
Reconstruction of the sampled space (can be costly).
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Rips, Čech or witness complexes are less constrained.
Cycles from persistence algorithms lack geometry.

Can we approximate a shortest set of loops generating
the homology group in polynomial time?
2-manifold triangulations [EW05], localized homology
[CF07,ZC08].
We combine greedy characterization [EW05],
persistence [ELZ02,ZC05], intertwined complexes
[CO08] and new observations.

Approximating Shortest Homology Loops – p. 4/27



Introduction

A few algorithms for computing homology groups from
the point data have been developed.
Reconstruction of the sampled space (can be costly).
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Rips, Čech or witness complexes are less constrained.
Cycles from persistence algorithms lack geometry.
Can we approximate a shortest set of loops generating
the homology group in polynomial time?
2-manifold triangulations [EW05], localized homology
[CF07,ZC08].

We combine greedy characterization [EW05],
persistence [ELZ02,ZC05], intertwined complexes
[CO08] and new observations.

Approximating Shortest Homology Loops – p. 4/27



Introduction

A few algorithms for computing homology groups from
the point data have been developed.
Reconstruction of the sampled space (can be costly).
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Homology groups & generators

Hk(T):k-dimensional homology group of T under Z2.

The elements of H1(T) are equivalent classes [g] of
1-dimensional cycles g, also called loops.
A set {[g1], ..., [gk]} generating H1(T) is called its basis.
Here k = rank(H1(T)).
We can associate a weight w(g) with each loop g in T.
The length of a set of loops G = {g1, ..., gk} is given by
Len(G) = Σk

i=1w(gi).
A shortest basis of H1(T) is a basis with minimal length.
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Complexes

Let P ⊂ R
d be a point set. B(p, α) denotes an open d-ball

centered at p with radius α.

The Čech complex Cα(P ) is a simplicial complex where
a simplex σ ∈ Cα(P ) iff Vert(σ), the vertices of σ, are in P

and ∩p∈Vert(σ)B(p, α) 6= 0.
The Rips complex Rα(P ) is a simplicial complex where
a simplex σ ∈ Rα(P ) if and only if Vert(σ) are within
pairwise Euclidean distance of α.
Proposition 1 For any finite set P ⊂ R

d and any α ≥ 0,
one has C

α

2 (P ) ⊆ Rα(P ) ⊆ Cα(P ).

Approximating Shortest Homology Loops – p. 6/27



Complexes

Let P ⊂ R
d be a point set. B(p, α) denotes an open d-ball

centered at p with radius α.
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Point set P
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Balls B(p, α) for p ∈ P
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Čech complex Cα(P )
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Rips complex R2α(P )
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Geodesics

The vertex set P is a dense sample of a smooth manifold
M isometrically embedded in R

d.

For p, q ∈ M , a geodesic is a curve connecting p and q in
M whose tangent derivatives have no component along
the tangent space of M .
Geodesics with the minimum length are called
minimizing geodesics
If p and q are close enough, the minimizing geodesic is
unique, which we denote as γ(p, q).
Minimizing geodesics induce a distance metric
dM : M × M → R.
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Euclidean and geodesic lengths

If d(p, q) ≤ ρ(M)/2, one has

dM (p, q) ≤ (1 +
4d2(p, q)

3ρ2(M)
)d(p, q).

Here d(p, q) is the Euclidean distance.
ρ(M) is the reach defined as the minimum distance
between M and its medial axis.

Approximating Shortest Homology Loops – p. 12/27



Convexity radius and sampling

Geodesic ball: BM (p, α) = {q | dM (p, q) < α}.

There is a αp > 0 for each p ∈ M where αp is the
supremum α so that BM (p, α) is convex (the minimizing
geodesics between any two points in BM (p, α) lie in
BM (p, α)).
Convexity radius of M : ρc(M) = infp∈Mαp.
P is an ε-sample of M if B(x, ε) ∩ P 6= ∅ for each x ∈ M .
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Theorem 1

Let M ⊂ R
d be a smooth, closed manifold with l as the

length of a shortest basis of H1(M) and k = rank H1(M).

Given a set P ⊂ M of n points which is an ε-sample of M

and 4ε ≤ α ≤ min{1
2

√

3
5ρ(M), ρc(M)}, one can compute a

set of loops G in O(n3 + knc(n, α)3) time where
1

1 + 4α2

3ρ2(M)

l ≤ Len(G) ≤ (1 +
4ε

α
)l.

Here c(n, α) is the size of the 2-skeleton of a Rips
complex R2α(P ).
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Theorem 2

Let K be a finite simplicial complex with positive weights
on edges.

A shortest basis for H1(K) can be computed in O(kn4)

time where k = rank H1(K) and n = |K|.
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Shortest basis

Notice that H1(K) is a vector space.

If a set of loops L in K contains a shortest basis, then
the greedy set G chosen from L is a shortest basis.
The greedy set G is an ordered set of loops {g1, ..., gk}

satisfying the following conditions:
g1 is the shortest loop in L nontrivial in H1(K);
gi+1 is the shortest loop in L independent of g1, ..., gi.
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Canonical loop

Let T be a shortest path tree in K rooted at p.

For any two nodes q1, q2 ∈ P , let spT (q1, q2) denote the
unique path from q1 to q2 in T .
Let ET be the set of edges in T . For a non-tree edge
e = (q1, q2) ∈ E\ET , define the canonical loop of e as

T (e) = spT (p, q1) ◦ e ◦ spT (q2, p).

Let Cp be the set of all canonical loops with respect to p:

Cp = {T (e) : e ∈ E\ET}.
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Candidate loops

A simple cycle l is tight if it contains a shortest path
between every pair of points in l.

Proposition 2 Every loop in a shortest basis of H1(K) is
tight.
Proposition 3 ∪p∈P Cp contains all tight loops.
Let Gp be the greedy set chosen from Cp; if Cp contains
equal length loops, we break ties by a canonical
ordering.
Proposition 4 The greedy set chosen from ∪p∈P Gp is a
shortest basis of H1(K).
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Algorithm 2

Proposition 5 CANONGEN(p,K) outputs Gp.

CANONGEN(p,K)

1: Construct a shortest path tree T in K with p as the root.

2: For each non-tree edge e = (q1, q2) ∈ E\ET , let T (e) be
the canonical loop of e.

3: Run the persistence algorithm based on the following
filtration of K: vertices in P = Vert(K), tree edges in T ,
non-tree edges in the canonical order, triangles in K.
Return the set of canonical loops associated with
k = rank(H1(K)) edges unpaired after the algorithm.
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Algorithm 3

SPGEN(K)
1: For each p ∈ P = Vert(K), set Gp := CANONGEN(p,K).
2: Sort all loops in ∪pGp by lengths in the increasing order.
3: Let g1, ..., gk|P | be this sorted list. Initialize G := {g1}.
4: for i := 2 to k|P |, do
5: if |G| = k, then
6: Exit the for loop.
7: else if gi is independent of loops in G, then
8: Add gi to G.
9: end if

10: end for
11: Return G.
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Approximating a shortest basis

We weight edges in R2α(P ), creating a complex K.

Let k be the rank of H1(R
α(P )) → H1(R

2α(P )).
A shortest set of k generators of H1(K) coincides with a
shortest basis of H1(C

α/2(P )).
A shortest basis of H1(C

α/2(P )) has length within a small
factor of the length of a shortest basis of H1(M).
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Algorithm 1

Theorem 3 SHORTLOOP(P, α) computes a shortest basis for
the persistent homology group H1(C

α/2(P )).

SHORTLOOP(P, α)

1: Compute two Rips complexes Rα(P ) and R2α(P ).

2: Let K be R2α(P ) where edges of R2α(P )\Rα(P ) are
weighted infinitely.

3: Compute the shortest basis for H1(K).
4: Return first k loops from the computed basis where k is

the rank of the H1(R
α(P )) → H1(R

2α(P )).
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Bounding Lengths: Proposition 1

Let P ⊂ M be an ε-sample and
4ε ≤ α ≤ min{1

2

√

3
5ρ(M), ρc(M)}.

Let g be a geodesic loop in M . There is a loop ĝ in
Cα/2(P ) so that [h(ĝ)] = [g] where h is a homotopy
equivalence and Len(ĝ) ≤ (1 + 4ε

α )Len(g).
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Proposition 2

Let P ⊂ M be an ε-sample and
4ε ≤ α ≤ min{1

2

√

3
5ρ(M), ρc(M)}.

If G = {g1, ..., gk} and G′ = {g′1, ..., g
′
k} are the generators of

a shortest basis of H1(M) and H1(K) respectively, then
we have Len(G′) ≤ (1 + 4ε

α )Len(G).
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Proposition 3

Let P ⊂ M be an ε-sample and
4ε ≤ α ≤ min{1

2

√

3
5ρ(M), ρc(M)}.

Let G and G′ be defined as in Proposition 1.
We have Len(G) ≤ (1 + 4α2

3ρ2(M))Len(G′).
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Theorem 4

Let P ⊂ M be an ε-sample and
4ε ≤ α ≤ min{1

2

√

3
5ρ(M), ρc(M)}.

Let G and G′ be a shortest basis of H1(M) and H1(K)

respectively.
We have 1

1+ 4α2

3ρ2(M)

Len(G) ≤ Len(G′) ≤ (1 + 4ε
α )Len(G).
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Thank you!
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