Fracture and Fragmentation of Simplicial Finite Element Meshes using Graphs

Alejandro Mota1, Jaroslaw Knap2

1Sandia National Laboratories, Livermore CA
2Army Research Laboratory, Aberdeen MD

CAT Workshop
Santa Fe, NM, August 29, 2009
Existing Fracture Algorithm

Implemented using a 4-way linked-list data structure.

Pandolfi and Ortiz (1999)
Fragmentation Cases

Change of topology according to the number of boundary sides of the triangle to be duplicated:

- 0 sides
- 1 side
- 2 sides
- 3 sides
Motivation

- Parallel 3D fracture and fragmentation.
- Parallel 3D contact.
- Same topology representation for both.
- Reuse for 2D if possible.
- Better performance for large meshes.
- Independence of interpolation scheme.
- Correctness.
Simplices are graphs vertices, and colored edges represent connectivity and orientation. Graphs are directed.
FE Meshes as Graphs

- Building of graph is top-down.
- Vertices are shared.
- Original orientation kept by color maps.
FE Meshes as Graphs

Simplex:
\[\sigma = [x_0, \ldots, x_n] \]

Face operator:
\[d_i(\sigma) := [x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n] \]

Incidence number:
\[[\sigma^p, \sigma^{p-1}] := \begin{cases}
0 & \text{if } \sigma^p \cap \sigma^{p-1} = \emptyset \\
1 & \text{if } \sigma^{p-1} = d_i(\sigma^p) \\
-1 & \text{if } \sigma^{p-1} = -d_i(\sigma^p)
\end{cases} \]

Graph:
\[V = \{v | v = f(\sigma) \in \mathbb{N}, \sigma \in K\} \]
\[E = \{e | e = (u, v), u = f(\sigma^p) \in V, v = f(\sigma^{p-1}) \in V, \sigma^p \in K, \sigma^{p-1} \in K, [\sigma^p, \sigma^{p-1}] \neq 0\} \]
Local Ordering as Color Maps

Triangle 0 sees point 0 as the blue point in segment 0. Triangle 1 sees it as red.
Cube Mesh as Graph

Graphs are quite complex even for meshes with a few elements.
Plate with Hole Mesh

Same graph representation works for 2D. Easy to extract useful features.
Simplex Graph Properties

- Simplices are vertices.
- Edges represent connectivity.
- Directed graph.
- Built top-down.
- Edge color is local order of n-simplex wrt to (n+1)-simplex.
- An n-simplex may be shared by many (n+1)-simplices.
Simplex Graph Properties (2)

- Edge color map modifies color of edge directly below if target vertex is shared.
- Color maps are linear maps akin to reflections and rotations, or single and double permutations.
- Graph depth represents the dimension of the mesh. Works for N dimensions.
- Connectivity array can always be recovered from graph.
Graph Fracture Algorithm

- Mark open triangles, segments, and corner points.
- Build segment subgraphs.
- Clone open triangles.
- Split segment vertices.
- Build point subgraphs.
- Split point vertices.
Graph Fracture Algorithm

Algorithm 1. SPLIT(G, U, n, i) Split articulation points.

Require: $U \subset V_i$, $i \leq n - 1$

1. for all $v \in U$ do
2. if $i < n - 2$ then
3. SPLIT($G, D^-(v), n, i + 1$)
4. else
5. CLONE($G, D^-(v), n$)
6. end if
7. $G'' \leftarrow G'(v) \setminus v$ // Check whether v is an articulation point
8. for all $j \in \{2, \ldots, N(G'')\}$ do
9. $Y \leftarrow \{u | u \in G'', g(u) = i + 1\}$
10. $V' \leftarrow \{V', z\}$ // Split the vertex in the subgraph and graph
11. for all $u \in Y$ do
12. $E' \leftarrow E' \setminus (u, v)$
13. $E' \leftarrow \{E', (u, z)\}$
14. end for
15. end for
16. end for

Algorithm 2. CLONE(G, U, n) Duplicate fractured interface simplices.

Require: $U \subset V_{i,n-1}$

1. for all $v \in U$ do
2. if $v \in V_{F,n-1}$ then
3. $Y \leftarrow D^-(v)$ // Note that $d^-(v) = 2$, hence $|Y| = 2$
4. $u_1 \leftarrow u \in Y$ s.t. $[f^{-1}(u_1), f^{-1}(v)] = 1$
5. $u_2 \leftarrow u \in Y$ s.t. $[f^{-1}(u_2), f^{-1}(v)] = -1$
6. $V \leftarrow \{V, w\}$
7. $E \leftarrow E \setminus (u_2, v)$
8. $E \leftarrow \{E, (u_2, w)\}$
9. for all $z \in D^+(v)$ do
10. $E \leftarrow \{E, (w, z)\}$
11. end for
12. end if
13. end for
Two-Tetrahedra Mesh

- Single shared triangle.
- Open simplices are triangle 2, segments 1,3,5 and points 1,2,3.
Fracture Algorithm (1)

First selected open point is 2, so process open segments 1 and 5 attached to it.
Fracture Algorithm (2)

Extract subgraph for segment 1, which clones open triangle 2, creating triangle 7.
Fracture Algorithm (3)

There are 2 branches in segment 1's subgraph, so the segment is split.
Fracture Algorithm (4)

Next is segment 5, now attached to 0 open triangles. Its subgraph has 2 branches.
Fracture Algorithm (5)

Both open segments for point 2 were split, its subgraph has 2 branches now.
Fracture Algorithm (6)

Next is point 1, with segment 3 the only remaining open segment.
Fracture Algorithm (6)

Next is point 1, with segment 3 the only remaining open segment.
Fracture Algorithm (7)

Segment 3 is split.
Fracture Algorithm (8)

Point 1 is split.
Finally point 3, with 0 open segments, is split, obtaining 2 separate tetrahedra.
Two-Tet Mesh and Graphs

Before

After
Correctness – Point Cubes

Two cubes joined by a point. Fracture all internal triangles. Current algorithm:

Graph representation:
Correctness – Edge Cubes

Two cubes joined by an edge. Fracture all internal triangles. Current algorithm:

Graph representation:
Graph Fracture Properties

- Subgraphs greatly simplify fracture.
- Operations on subgraphs are mirrored on parent graph.
- Localized operations confined to subgraphs, essential for parallelization.
- Time complexity of initialization linear with number of elements.
- Time complexity of fracture linear with number of open simplices.
Graph Fracture Properties (2)

- Non-manifold cases handled correctly.
- Significant reuse of code.
- Marking of open simplices is top-down.
- Building of subgraphs is bottom-up.
- Fracture is top-down.
- Works for both 2D and 3D.
- Recursive with each level in the graph.
C++ Boost Graph Library

- Free peer-reviewed portable C++ source library.
- Works well with the C++ Standard Library.
- Generic, STL-like interface for manipulating and traversing graphs.
- Hides details of the graph data structure implementation.
Performance Evaluation

- Reference fracture implementation is the one used in the ARES FE code.
- Tested 20 3D meshes of various sizes and geometries.
- Initialization time plotted as a function of the mesh size.
- Fracture time plotted as a function of triangles to fracture.
Performance Evaluation (2)

- Improvements in C++ Boost library result in immediate performance gain.
- First implementation.
- Some performance tuning.
- No thorough profiling and extensive performance tuning yet.
- Tests performed using GCC on an Intel Xeon 1.5 GHz machine.
Initialization Time

Time Complexity of Initialization

Comparison of 20 meshes

- **Graph** $t_i = 4.5949 \times 10^{-5} n_E^{1.1153}$
- **List** $t_i = 4.7271 \times 10^{-7} n_E^{2.0946}$
Fracture Time

Time Complexity of Fracture Algorithm

Comparison of 20 meshes

Graph \(t_f = 2.2881 \times 10^{-4} n_T^{1.0343} \)

List \(t_L = 2.1735 \times 10^{-8} n_T^{1.8651} \)
3D Graph Parallel Fracture

Partition mesh and create graph for each partition.
3D Graph Parallel Fracture

- On each fracture step mark open simplices.
- Partition-boundary points are missing parts of their subgraphs. Supplement from remote partitions.
3D Graph Parallel Fracture

Apply serial fracture algorithm to each partition.
Subgraphs for partition-boundary points are in a consistent state across partition boundaries after serial fracture on each partition.
3D Graph Parallel Fracture

Exchange information between partition-boundary point subgraphs to identify and match newly created simplices across partition boundaries.
3D Graph Parallel Fracture

• Update boundary communicator.
• Discard the remote part of the graph for each partition and proceed with mechanics until next fracture step.
Testing

- Test on simple meshes yield the same results as serial fragmentation.
- The number of partitions is incremented until the partition algorithm (METIS) produces partitions with zero elements.

Cube example
2 to 14 partitions
Testing

- Test on simple meshes yield the same results as serial fragmentation.
Coarse FE Mesh - Serial

Material model: Porous plasticity informed by QC
Interface model: Strain localization element
Failure criterion: critical plastic strain ~ 0.12
Mesh: 39150 elements, 78850 nodes
Machine: Single-processor Linux PC, ~ 1 week run time

Flaw resolved explicitly
Material model: Porous plasticity informed by QC
Interface model: Strain localization element
Failure criterion: critical plastic strain ~ 0.12
Mesh: 220945 elements, 399998 nodes
Machine: LLNL ALC, 400 processors, 8 hours run time
Partition mesh and create graph for each partition.
Results: Coarse, Fine Meshes

Configuration at 75 μs with initial torsion

- Coarse Mesh - Serial
- Kinked cracks
- Fine Mesh - Parallel
Crack Angles

Serial simulation
Peak pressure: 6.1 MPa
Crack kink angle ~ 14 degrees

Experimental results
(Chao and Shepherd, 2004)

<table>
<thead>
<tr>
<th>Peak pressure [MPa]</th>
<th>Crack angle [degrees]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>7</td>
</tr>
<tr>
<td>5.1</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>50</td>
</tr>
</tbody>
</table>

Parallel simulation
Peak pressure: 6.1 MPa
Crack kink angle ~ 16 degrees
Conclusions

- Graphs allow fracture by simple, repetitive operations.
- The use of the Boost library reduced the work load significantly.
- Localized fracture operations suitable for parallel implementation.
- Time complexity reduced practically from quadratic to linear.
- Non-manifold cases handled correctly.
Future Work

- Extend graph representation for CW complexes.
- Run very large fracture problems.
- Reuse graph mesh representation for serial and parallel contact.
- Replace connectivity arrays and use the graph for all FE computations.
- Mesh subdivision.