
Fracture and Fragmentation of 
Simplicial Finite Element Meshes 

using Graphs

Alejandro Mota1, Jaroslaw Knap2

CAT Workshop
Santa Fe, NM, August 29, 2009

1Sandia National Laboratories, Livermore CA
2Army Research Laboratory, Aberdeen MD



Existing Fracture Algorithm

Implemented using a 4-way linked-list 
data structure.

Pandolfi and Ortiz (1999)



Fragmentation Cases

Change of topology according to the 
number of boundary sides of the triangle 
to be duplicated:

0 sides 3 sides2 sides1 side



Motivation

 Parallel 3D fracture and fragmentation.
 Parallel 3D contact.
 Same topology representation for both.
 Reuse for 2D if possible.
 Better performance for large meshes.
 Independence of interpolation scheme.
 Correctness.



Simplices are graphs vertices, and colored edges 
represent connectivity and orientation. Graphs are 
directed.

Simplices as Graphs



FE Meshes as Graphs

 Building of graph is top-down.
 Vertices are shared.
 Original orientation kept by color 

maps.



FE Meshes as Graphs
Simplex:

Face operator:

Incidence number:

Graph:



Local Ordering as Color Maps

Triangle 0 sees point 0 as the blue point in segment 
0. Triangle 1 sees it as red.

color maps



Cube Mesh as Graph

Graphs are quite complex even for meshes with a few 
elements.



Plate with Hole Mesh

Same graph representation works for 2D. Easy to 
extract useful features.



Simplex Graph Properties

 Simplices are vertices.
 Edges represent connectivity.
 Directed graph.
 Built top-down.
 Edge color is local order of n-simplex 

wrt to (n+1)-simplex.
 An n-simplex may be shared by many 

(n+1)-simplices.



Simplex Graph Properties (2)

 Edge color map modifies color of edge 
directly below if target vertex is shared.

 Color maps are linear maps akin to 
reflections and rotations, or single and 
double permutations.

 Graph depth represents the dimension 
of the mesh. Works for N dimensions.

 Connectivity array can always be 
recovered from graph.



Graph Fracture Algorithm

 Mark open triangles, segments, and 
corner points.

 Build segment subgraphs.
 Clone open triangles.
 Split segment vertices.
 Build point subgraphs.
 Split point vertices.



Graph Fracture Algorithm



Two-Tetrahedra Mesh

 Single shared triangle.

 Open simplices are triangle 2, segments 1,3,5 
and points 1,2,3.



Fracture Algorithm (1)

First selected open point 
is 2, so process open 
segments 1 and 5 attached 
to it.



Fracture Algorithm (2)
Extract subgraph for segment 1, which clones open 
triangle 2, creating triangle 7.



Fracture Algorithm (3)
There are 2 branches in segment 1's subgraph, so the 
segment is split.



Fracture Algorithm (4)
Next is segment 5, now attached to 0 open triangles. 
Its subgraph has 2 branches.



Fracture Algorithm (5)
Both open segments for point 2 were split, its 
subgraph has 2 branches now.



Fracture Algorithm (6)

Next is point 1, with 
segment 3 the only 
remaining open 
segment.



Fracture Algorithm (6)

Next is point 1, with 
segment 3 the only 
remaining open 
segment.



Fracture Algorithm (7)

Segment 3 is split.



Fracture Algorithm (8)

Point 1 is split.



Fracture Algorithm (9)
Finally point 3, with 0 open segments, is split, 
obtaining 2 separate tetrahedra.



Two-Tet Mesh and Graphs

Before

After



Correctness – Point Cubes
Two cubes joined by a point. Fracture all internal 
triangles. Current algorithm:

Graph representation:



Correctness – Edge Cubes
Two cubes joined by an edge. Fracture all internal 
triangles. Current algorithm:

Graph representation:



Graph Fracture Properties

 Subgraphs greatly simplify fracture.
 Operations on subgraphs are mirrored 

on parent graph.
 Localized operations confined to 

subgraphs, essential for parallelization.
 Time complexity of initialization linear 

with number of elements.
 Time complexity of fracture linear with 

number of open simplices.



Graph Fracture Properties (2)

 Non-manifold cases handled correctly.
 Significant reuse of code.
 Marking of open simplices is top-down.
 Building of subgraphs is bottom-up.
 Fracture is top-down.
 Works for both 2D and 3D.
 Recursive with each level in the graph.



C++ Boost Graph Library

 Free peer-reviewed portable C++ 
source library.

 Works well with the C++ Standard 
Library.

 Generic, STL-like interface for 
manipulating and traversing graphs.

 Hides details of the graph data 
structure implementation.



Performance Evaluation

 Reference fracture implementation is 
the one used in the ARES FE code.

 Tested 20 3D meshes of various sizes 
and geometries.

 Initialization time plotted as a function 
of the mesh size.

 Fracture time plotted as a function of 
triangles to fracture.



Performance Evaluation (2)

 Improvements in C++ Boost library 
result in immediate performance gain.

 First implementation.
 Some performance tuning.
 No thorough profiling and extensive 

performance tuning yet.
 Tests performed using GCC on an Intel 

Xeon 1.5 GHz machine.



Initialization Time



Fracture Time



3D Graph Parallel Fracture

Partition mesh and create graph for each 
partition.



3D Graph Parallel Fracture
 On each fracture step mark open simplices. 
 Partition-boundary points are missing parts 

of their subgraphs. Supplement from remote 
partitions.



3D Graph Parallel Fracture

Apply serial fracture algorithm to each 
partition.



3D Graph Parallel Fracture

Subgraphs for partition-boundary points are 
in a consistent state across partition 
boundaries after serial fracture on each 
partition.



3D Graph Parallel Fracture

Exchange information between partition-
boundary point subgraphs to identify and 
match newly created simplices across 
partition boundaries.



3D Graph Parallel Fracture
• Update boundary communicator.
• Discard the remote part of the graph for 

each partition and proceed with mechanics 
until next fracture step.



• Test on simple meshes yield the same 
results as serial fragmentation.

• The number of partitions is incremented 
until the partition algorithm (METIS) 
produces partitions with zero elements.

Cube example
 2 to 14 partitions

Testing



Tube example
 2 to 8 partitions

• Test on simple meshes yield the same 
results as serial fragmentation.

Testing



 

Coarse FE Mesh - Serial

Material model: Porous plasticity informed by QC
Interface model: Strain localization element
Failure criterion: critical plastic strain ~ 0.12
Mesh: 39150 elements, 78850 nodes
Machine: Single-processor Linux PC, ~1 week run time

Flaw resolved explicitly



Fine FE Mesh - Parallel

Material model: Porous plasticity informed by QC
Interface model: Strain localization element
Failure criterion: critical plastic strain ~ 0.12 
Mesh: 220945 elements, 399998 nodes
Machine: LLNL ALC, 400 processors, 8 hours run time

Flaw resolved explicitly



3D Graph Parallel Fracture

Partition mesh and create graph

for each partition.



Results: Coarse, Fine Meshes

Configuration at 75 μs
with initial torsion

Kinked cracksCoarse Mesh - Serial Fine Mesh - Parallel



Crack Angles

Serial simulation
Peak pressure: 6.1 MPa

Crack kink angle ~ 14 degrees

Peak 
pressure

[MPa]

Crack angle
[degrees]

6.1 7

5.1 13

4.1 38

3.3 50

Experimental results
(Chao and Shepherd, 2004)

Parallel simulation
Peak pressure: 6.1 MPa

Crack kink angle ~ 16 degrees



Conclusions

 Graphs allow fracture by simple, 
repetitive operations.

 The use of the Boost library reduced 
the work load significantly.

 Localized fracture operations suitable 
for parallel implementation.

 Time complexity reduced practically 
from quadratic to linear.

 Non-manifold cases handled correctly.



Future Work

 Extend graph representation for CW 
complexes.

 Run very large fracture problems.
 Reuse graph mesh representation for 

serial and parallel contact.
 Replace connectivity arrays and use the 

graph for all FE computations.
 Mesh subdivision.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

