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Outline of Talk

 Background / Motivation / Evolution.

 New Linear Algebra Foundation:  
 Teuchos / Tpetra / Kokkos
 Zoltan

 Next Generation Algorithm Packages
 Anasazi / Belos

 Trilinos and Computational Topology
 Challenges



Sandia Physics Simulation Codes

 Element-based
 Finite element, finite volume, 

finite difference, network, etc…

 Large-scale
 Billions of unknowns

 Parallel
 MPI-based SPMD
 Distributed memory

 C++
 Object oriented
 Some coupling to legacy Fortran 

libraries
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Motivation For Trilinos
 Sandia does LOTS of solver work.  
 10 years ago …

 Aztec was a mature package.  Used in many codes.
 FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many 

other codes were (and are) in use.
 New projects were underway or planned in multi-level 

preconditioners, eigensolvers, non-linear solvers, etc…
 The challenges:

 Little or no coordination was in place to:
• Efficiently reuse existing solver technology.
• Leverage new development across various projects.
• Support solver software processes.
• Provide consistent solver APIs for applications.

 ASCI was forming software quality assurance/engineering 
(SQA/SQE) requirements:

• Daunting requirements for any single solver effort to address alone.



Evolving Trilinos Solution
 Trilinos1 is an evolving framework to address these challenges:

 Fundamental atomic unit is a package.
 Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).
 Provides a common abstract solver API (Thyra package).
 Provides a ready-made package infrastructure (new_package package):

• Source code management (cvs, bonsai).
• Build tools (autotools).
• Automated regression testing (queue directories within repository).
• Communication tools (mailman mail lists).

 Specifies requirements and suggested practices for package SQA.
 In general allows us to categorize efforts:

 Efforts best done at the Trilinos level (useful to most or all packages).
 Efforts best done at a package level (peculiar or important to a package).
 Allows package developers to focus only on things that are unique to 

their package.

1. Trilinos loose translation: “A string of pearls”



Evolving Trilinos Solution
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 Beyond a “solvers” framework
 Natural expansion of capabilities to satisfy 

application and research needs

 Discretization methods, AD, Mortar methods, …



Trilinos Package Summary

RythmosTime Integration

AmesosDirect sparse linear solvers

Epetra, Teuchos, PlirisDirect dense linear solvers

AnasaziIterative eigenvalue solvers

Epetra, Jpetra, TpetraLinear algebra objects

Core
Thyra, Stratimikos, RTOpAbstract interfaces

Zoltan, IsorropiaLoad Balancing

PyTrilinos, WebTrilinos, Star-P, ForTrilinos“Skins”

Teuchos, EpetraExt, Kokkos, TriutilsC++ utilities, (some) I/O

MOOCHO, AristosOptimization (SAND)

NOX, LOCANonlinear system solvers

MerosBlock preconditioners

ML, CLAPSMultilevel preconditioners

AztecOO, IFPACKILU-type preconditioners

AztecOO, Belos, KomplexIterative (Krylov) linear solvers

Solvers

MoertelMortar Methods

SacadoAutomatic Differentiation
Methods

IntrepidSpatial Discretizations (FEM,FV,FD)
Discretizations

Package(s)Objective



Satisfying Our Goals:
Templates

 How do we support multiple data types?
 C++ templating of the scalar type.
 Neither new nor difficult.
 Compiler support is good enough now.

 This provides generic programming capability, 
independent of data types.

 Templating implements compile time polymorphism.

 Pro: No runtime penalty.

 Con: Potentially large compile-time penalty.
 Compiling is a good use of multiple cores.
 Techniques exist for alleviating this for common and user 

data types (specifically, explicit instantiation).
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 Portable utility package of commonly useful tools:

 ParameterList class: key/value pair database, recursive capabilities.
 LAPACK, BLAS wrappers (templated on ordinal and scalar type).
 Dense matrix and vector classes (compatible with BLAS/LAPACK).
 FLOP counters, timers.
 Ordinal, Scalar Traits support: Definition of ‘zero’, ‘one’, etc.
 Reference counted pointers / arrays, and more…

 Takes advantage of advanced features of C++:
 Templates
 Standard Template Library (STL)

Developers: Roscoe Barlett, Kevin Long, Heidi Thornquist, Mike Heroux, 
Paul Sexton, Kris Kampshoff, Chris Baker

Teuchos



Teuchos::ScalarTraits
(Arbitrary Datatypes)

 Any datatype that defines zero, one, addition, subtraction, and 
multiplication can use nearly all BLAS functions
 Some require square root or division
 Not necessary to define full Teuchos::ScalarTraits functionality

 ARPREC 
 Uses arrays of 64-bit floating-point numbers
 Maximum working precision (in decimal digits) must be specified 

before any calculations are done
mp::mp_init(200);

 dd (32 digits), qd (64 digits), mp_int
 GMP

 Integer, rational, and floating point numbers
 Uses fullwords (32 or 64 bits)
 Dynamic space allocation



Teuchos::Comm
 Teuchos::Comm is a pure virtual class:

 Has no executable code, interfaces only.
 Encapsulates behavior and attributes of the parallel machine.
 Defines interfaces for basic comm services between “nodes”, e.g.:

• collective communications
• gather/scatter capabilities

 Allows multiple parallel machine implementations.

 Implementation details of parallel machine confined to Comm 
subclasses.

 Any package that uses Teuchos::Comm has no dependence on any 
particular API (e.g., MPI).
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1Petra is Greek for “foundation”.

Trilinos Common Language: Petra
 Petra provides a “common language” for distributed linear 

algebra objects (operator, matrix, vector)

 Petra1 provides distributed matrix and vector services.
 Epetra (Essential Petra):  

 Current production version. 
 Restricted to real, double precision arithmetic.

 Tpetra (Templated Petra):  
 Next generation C++ version. 
 Uses namespaces, and STL: Improved usability/efficiency.

 Jpetra (Java Petra): 
 Pure Java. Portable to any JVM.  
 Interfaces to Java versions of MPI, LAPACK and BLAS via 

interfaces.

Developers: Chris Baker, Mike Heroux, Rob Hoekstra, Alan Williams



Tpetra Abstract Interfaces

 Tpetra is a successor to Trilinos’ Epetra package.

 These classes provide data services for many other 
packages in the Trilinos project (e.g., linear solvers, 
eigensolvers, non-linear solvers, preconditioners).

 Tpetra centered around the following interfaces:

• Comm objects provide 
communication between nodes.

• DistObject efficiently 
communicates data for distributed 
objects.

• Map describes layout of data in 
distributed objects.

• Linear algebra object interfaces 
(Operator, Vector) for writing 
abstract numerical algorithms.



Kokkos Node Package

 Trilinos/Kokkos: Trilinos compute node package.
 Generic Node object defines:

 Memory structures for parallel buffers
 Parallel computation routines (e.g., parallel_for, parallel_reduce)

 Kokkos also employs this API to provide local linear algebra 
objects for use in Tpetra distributed objects.

Kokkos::Node

Kokkos::SerialNode Kokkos::CUDANodeKokkos::TBBNode …

Example:
Kokkos::LocalCrsMatrix<int,double,NODE> lclA;
lclA.submitEntries(…);             // fill the matrix
Kokkos::SparseMatVec<int,double,NODE> multOp(lclA);
Kokkos::LocalMultiVector<int,double,NODE> lclX(…), lclY(…);
multOp.apply(lclX,lclY);           // apply the matrix operator



Zoltan
 Data Services for Dynamic Applications

 Dynamic load balancing
 Graph coloring
 Data migration
 Matrix ordering

 Partitioners:
 Geometric (coordinate-based) methods:

• Recursive Coordinate Bisection (Berger, Bokhari)
• Recursive Inertial Bisection (Taylor, Nour-Omid)
• Space Filling Curves (Peano, Hilbert)
• Refinement-tree Partitioning (Mitchell) 

 Hypergraph and graph (connectivity-based) methods:
• Hypergraph Repartitioning PaToH (Catalyurek)
• Zoltan Hypergraph Partitioning
• ParMETIS  (U. Minnesota)
• Jostle (U. Greenwich)

Developers: Karen Devine, Eric Boman, Robert Heaphy



Belos
 Next-generation linear solver library, written in templated C++.

 Provide a generic framework for developing iterative algorithms for solving large-scale, 
linear problems.

 Algorithm implementation is accomplished through the use of traits classes and abstract 
base classes:
 Operator-vector products: Belos::MultiVecTraits,  Belos::OperatorTraits
 Orthogonalization: Belos::OrthoManager, Belos::MatOrthoManager
 Status tests: Belos::StatusTest, Belos::StatusTestResNorm
 Iteration kernels: Belos::Iteration
 Linear solver managers: Belos::SolverManager

 AztecOO provides solvers for Ax=b, what about solvers for:
 Simultaneously solved systems w/ multiple-RHS:  AX = B
 Sequentially solved systems w/ multiple-RHS:  AXi = Bi , i=1,…,t
 Sequences of multiple-RHS systems:  AiXi = Bi , i=1,…,t

 Many advanced methods for these types of linear systems
 Block methods: block GMRES [Vital], block CG/BICG [O’Leary]
 “Seed” solvers: hybrid GMRES [Nachtigal, et al.]
 Recycling solvers: recycled Krylov methods [Parks, et al.]
 Restarting techniques, orthogonalization techniques, …

Developers:  Heidi Thornquist, Mike Heroux, Mike Parks,
Rich Lehoucq, Teri Barth



Anasazi
 Next-generation eigensolver library, written in templated C++.

 Provide a generic framework for developing iterative algorithms for solving large-scale 
eigenproblems.

 Algorithm implementation is accomplished through the use of traits classes and 
abstract base classes:
 Operator-vector products: Anasazi::MultiVecTraits,  Anasazi::OperatorTraits
 Orthogonalization: Anasazi::OrthoManager, Anasazi::MatOrthoManager
 Status tests: Anasazi::StatusTest, Anasazi::StatusTestResNorm
 Iteration kernels: Anasazi::Eigensolver
 Eigensolver managers: Anasazi::SolverManager
 Eigenproblem: Anasazi::Eigenproblem
 Sort managers: Anasazi::SortManager

 Currently has solver managers for three eigensolvers:
 Block Krylov-Schur
 Block Davidson 
 LOBPCG

 Can solve:
 standard and generalized eigenproblems
 Hermitian and non-Hermitian eigenproblems
 real or complex-valued eigenproblems

Developers:  Heidi Thornquist, Mike Heroux, Chris Baker, 
Rich Lehoucq, Ulrich Hetmaniuk



Linear Algebra Interface
 MultiVecTraits<ST,MV>

 Interface to define the linear algebra required by most iterative solvers:
• creational methods
• dot products, norms
• update methods
• initialize / randomize

 Implementations:
• MultiVecTraits<double,Epetra_MultiVector>
• MultiVecTraits<ST,Thyra::MultiVectorBase<ST> >

 OperatorTraits<ST,MV,OP>

 Interface to enable the application of an operator to a multivector.
 Implementations:

• OperatorTraits<double,Epetra_MultiVector,Epetra_Operator>
• OperatorTraits<ST,Thyra::MultiVectorBase<ST>,Thyra::LinearOpBase<ST> >



Trilinos & Computational Topology
 Much effort has been spent on the real field …
 Challenges:

 Tpetra operate over rationals, integers, Z2, {-1, 0, +1}
• Develop new Kokkos node for local computation
• Using GMP may be problematic for parallelism

 Develop new and/or standard algorithms in Trilinos?

 Leverage algorithms from LinBox
• Better understanding of current linear algebra design
• Similarity in “traits” mechanisms



Trilinos Availability / Information
 Trilinos and related packages are available via LGPL.

 Current release (9.0) is “click release”.  Unlimited availability.
 3100+ Downloads (not including internal Sandia users).
 3880 registered users: 

• 61% university, 11% industry, 15% gov’t.
• 38% European, 33% US, 15% Asian.

 Trilinos Release 10: September 2008.

 Trilinos Awards:
 2004 R&D 100 Award.
 SC2004 HPC Software Challenge Award.
 Sandia Team Employee Recognition Award.
 Lockheed-Martin Nova Award Nominee.

 More information:
 http://trilinos.sandia.gov

 7th Annual Trilinos User Group Meeting in November 2009 @ SNL
 talks available for download


