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Complicated Patterns in Materials

Complicated irregular patterns can be observed throughout the
applied sciences, for example in materials science.

Can mathematical tools provide a reasonable quantitative
measurement?
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Complicated Patterns in Fluids

Certain fluids experiments and simulations exhibit spiral defect
chaos. How can one assess the correctness of the simulations?

Experiment

(d

‘ Simulation
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Three-Dimensional Cahn-Hilliard Example

Even for relatively small three-dimensional microstructures the
Betti numbers have to be determined computationally:

This isosurface has
Betti numbers

Bo=1,
(1 = 1701,
B2 =0.

Computed using the
CHomP software.
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1. Homological Analysis of Evolving Microstructures

2. Response Fields in Polycrystals

3. Spiral Defect Chaos in Fluids
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Models for Phase Separation

Quenching of homogeneous binary or multi-component alloys may
lead to phase separation generating complicated microstructures.
The resulting patterns are generally a transient phenomenon and
evolve with time.

A variety of phenomenological models for such processes have been
proposed over the years, including:

e Cahn & Hilliard (1958), Cook (1970), Langer (1971): The
classical Cahn-Hilliard model and its stochastic extension

Uy = —A(2Au+ f(u)) +0 - €

e Novick-Cohen (1988): Inclusion of frictional inter-phase forces
leads to the viscous Cahn-Hilliard model

B-ur—(1—p) e?Auy = —A(E?Au + f(u))
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Quantitative Model Assessment

e How realistic are these phenomenological models?
e Do they reproduce the microstructures accurately?
e Is a meaningful quantitative assessment possible?

Due to the irregularity and high complexity of the involved
microstructures, computational homology is an obvious choice.

(Courtesy of P. Voorhees, Northwestern University.)
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Homological Analysis of Microstructures

Gameiro, Mischaikow, W. (Acta Materialia, 2005):

For total mass i, consider the Betti numbers g and 31 of the sets

XE(t) = {x € Q| £(u(t,x) — p) >0}

Sample set X (t) for (CHC) with =0, o =0, and t = 0.0036.
The set has 5y = 26 components and 31 = 4 loops.
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The Effects of Thermal Fluctuations

Cahn-Hilliard Model with € = 0.005 and total mass 0:

The snapshots are taken at t = 0.0004, t = 0.0012, t = 0.0036.
The dark regions are X*(t), their
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Polycrystal Response Fields

Sample Betti Number Evolution

Spiral Defect Chaos in Fluids

Betti number evolution for the Cahn-Hilliard model (solid red) and
the Cahn-Hilliard-Cook model (dashed blue).
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Averaged Betti Number Evolution

From 100 simulations for total mass ;= 0 and a variety of
different noise levels o.
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Quantification of Boundary Effects

Combining the Betti number information for X*(t) leads to the
quantification of boundary effects.

Only white components
with black boundary are
internal components,

all of the remaining white
components touch the
boundary.

ﬁint,O(X+(t))
Brdy,0(XT (1))

A1(X (1))
Bo(X(1)) = Bu(X™ (1))
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Visualization of Internal Components

The internal components can be visualized using homcubes.

In the figure, 5y = 526 and 31 = 431, for ¢ = 0.0015 and p = 0.
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Internal vs. Boundary Components

Averaged evolution curves for the number (3, o of internal
components and the number (3,4, 0 of components touching the
boundary.

c=0 c=20.01

The figures are for X (t), with ¢ = 0.005, » = 0, and 100 samples.
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The Averaged Euler Characteristic

e In the two-dimensional setting, the Euler characteristic of the
set X*(t) can be computed as

X (XT(t) = Bo (XT(t)) — b1 (XT(2))

e For mass =0, an inherent symmetry in the Cahn-Hilliard
model implies that the averaged Betti numbers satisfy

(B (XT(1)) = (Be (X~ (1)) for k=0,1

e As a result, the averaged Euler characteristic is given by

(X (XT(1))) = (Boay.o (X (1))

The Euler characteristic cannot detect the averaged bulk behavior!
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The Effects of Domain Size

e The previous simulations for ¢ = 0.005 resulted in an average
of about 30 internal and 30 boundary components on a unit
square during the initial phase separation.

e Rescaling € can be interpreted as rescaling the size of the base
domain for the simulation.

e Additional simulations show that

e for ¢ = 0.0015 one obtains an average of about 400 internal
and 100 boundary components during the initial phase
separation, and

e for e = 0.01 one obtains an average of about 6 internal and 15
boundary components during the initial phase separation.

Can the non-monotone bulk behavior still be detected?
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The Effects of Domain Size

Variation of ¢ corresponds to rescaling the underlying domain €.
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Stress Networks in Polycrystals

In other situations, the atomic-level microstructure is not the
primary object of interest, but certain derived property fields.

Example: Thermal degradation of marble [Weiss et al. (2003)]

Internal stresses in polycrystalline materials can lead to
micro-cracking, and ultimately to destruction of components.
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Internal Stresses in (3-Eucryptite Composites

Fuller, Reimanis, et al. (2007):

Internal stresses in polycrystals can lead to spontaneous material
ejection as a consequence of an indentation.
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Stress Networks in Polycrystals
Fuller, Saylor, W. (Acta Materialia, 2009):

Even identical grain microstructures
can lead to considerably different
elastic energy density / stress
networks, and therefore to different
cracking behavior. These differences
can be quantified by homology.
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Maximal Principal Stress
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Grain Boundary Misorientations
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Rayleigh-Bénard Convection Patterns

Krishan, et al. (Physics of Fluids, 2007):
Homology and Symmetry-Breaking in Rayleigh-Bénard convection

Experimental data:

Visualization of the
components and loops for
the cold downflow (left
column) and the hot upflow
(right column).
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Experimental Upflow-Downflow Asymmetry

Experimental data:

Time series plots of the Betti numbers for the cold downflow and
the hot upflow exhibit a surprising asymmetry.

Can this asymmetry be seen in numerical simulations?
Typical simulations employ the Boussinesq approximation...
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Breakdown of the Boussinesq Approximation

Betti number time series from both Boussinesq simulations (a, b)
and non-Boussinesq simulations (c, d) indicate the breakdown of
the Boussinesq approximation.
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