Welcome Address – Scott A. Mitchell

Sandia National Laboratories - CSRI Workshop on Combinatorial Algebraic Topology (CAT): software, applications & algorithms
(by invitation only)
29–30 August 2009, Reception Evening 28 August
Hilton Santa Fe, NM
CAT Workshop

- Funders
 - CSRI, ASC, NNSA, DOE, U.S.A. taxpayer
 - Thuc Hoang (DOE), Njema Frazier (DOE)
 - Scott Collis (SNL)
- Organizers
 - Scott Mitchell (idea, proposal)
 - Shawn Martin (logo)
- Note takers – written summary
 - David Day
 - Janine Bennett
- Admin
 - Deanna Ceballos (financial)
 - Bernadette Watts (website)
- 39 Technical participants
 - 18 labs: 16 SNL, 1 LLNL, 1 LBNL
 - 20 univ
 - 1 commercial
Computer Science Research Institute (CSRI)
CAT workshop’s sponsoring program

<table>
<thead>
<tr>
<th>Measure</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Workshops</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Visitors (Institutions)</td>
<td>102 (67)</td>
<td>106 (68)</td>
</tr>
<tr>
<td>Summer Students</td>
<td>43</td>
<td>34</td>
</tr>
<tr>
<td>Sabbaticals</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>% Hires having prior CSRI partnerships</td>
<td>73%</td>
<td>80%</td>
</tr>
</tbody>
</table>
Computer Science Research Institute (CSRI)

- Open environment
 - no guards, gates, guns
 - focus on publications
- Productive place to visit
 - faculty
 - post-docs
 - contracts
- Excellent experience for summer students
 - graduate and some undergrad
 - extensive overview lecture series
- Where I work
 - Scott’s NGC story
Since this is a reception talk…

“How I got interested in topology”

• Algebraic topology Cornell grad-school class – where are the pictures?
 – a doughnut, “applications”, … tried to forget all that, but it came back…
• Hex mesh generation circa 1990’s
 – Q: Given a quadrilateral mesh enclosing a volume, can you fill volume with hexahedra?
 ![Diagram of quadrilateral mesh to hexahedra]
 – Homology and hex-mesh existence proof
 (1993 P. Murdoch rediscovered hex dual = arrangement of surfaces)
 • ball: even #quadrilaterals = necessary and sufficient
 • non-ball w/ embedding in 3d: above +
 The cycles must have even length if they are null-homotopic in volume
 ![Diagram of dual arrangement]

How I got interested in topology

• Meshing circa 1990’s
 – template challenges -> existence proof -> template constructions

 tets diced into hexes to semi-structured hex transitions

 Robert Schneiders’s “open problem”

 1995 David Eppstein hexes = O(quads) template transition

 – various challenges for non-ball models -> decomposition by H_1 generators finesses in theory, but no tools to do it
 – hex mesh generation via topological arrangements
 – hex mesh improvement “swaps”
 – I could never get the geometry right for anything to be very useful for finite elements…

• 2000 Project leadership -> 2002 management - plead temporary insanity 😊
• 2007 returned to technical work
• 2008 looked around
 – dozens of SNL apps crying out for discrete combinatorial topological solutions!
 – topology community turned computational!

 – Form a small research team, Shawn Martin, David Day, Eric Boman.
 – Get funding for a workshop! Here we are!
CAT Workshop Motivation

- Time right for a CAT workshop
 - Other events
 - Linear algebra factorization
 - Applied Algebraic Topology Minisymposium at the Fifth European Congress of Mathematics, 2008. - 5 speakers
 - IMA shortcourse Applied Algebraic Topology 2009, Carlsson & Ghrist, Henry Adams (also CAT)
 - Computational Geometry, solid modeling
 - SoCG Symp. Comp. Geom, 2009 had 1-3 topo papers
 - CCCG Canadian Conf. Comp. Geom, few papers
 - Visualization, Morse-Smale theory
 - TopolInVis, 2009 Utah 23 talks, 2007 Germany, 2005 Slovakia
 - Math, Mark Brittenham’s “low dimensional topology conference page”
 - 11 annual events (regional?), 6 sessions at AMS meetings, 16 “other” events, 2009
 - http://www.math.unl.edu/~mbrittenham2/ldt/conf.html
 - Bring together researchers from different communities
 - all new to me… but even established groups within an area meet each other for 1st time.
 - Visualization, solid modeling, linear algebra, computational geometry, image analysis,

- Scope is discrete, computation, homology, Morse-Smale

- More CSRI-sponsored workshops possible
 - please send feedback, ideas!
CAT Workshop Goals

• Software, Applications, Algorithms
 – new univ-labs and univ-univ partnerships
 • many forms possible – opportunities on next 4 slides
 – software partnerships
 • Trilinos for parallel linear algebra over finite fields?
 – many SNL topology-ready applications
 • university partnerships to solve?
 – research partnerships
 • univ-labs, univ-univ
 – Identify open problems
 • handle on complexity, scalability
 – Community software plans
Software talks

- **Software**
 The Saturday morning session focuses on existing software efforts for combinatorial algebraic topology. The intended audience is those wishing to use their tools for research framework or application solutions.

- **Speakers are asked to address the following items**
 - scope, current and planned
 - capabilities, especially:
 - Betti numbers, homology generators, generators meeting application-specific criteria;
 - filtrations & Reeb graphs for sensitivity and transients;
 - Smith Normal Form factorization, other linear algebra capabilities
 - scalability
 - software maturity/usability
 - availability and usage models
 - please try to limit time on reduction, sampling, and initial complex generation
- 35 minutes = 25 talk + 10 discussion
Partnership opportunities, software (snapshots, not a workshop program overview)

- SNL topology-ready software
 - Trilinos large-scale parallel linear algebra
 - general purpose, templated types
 - Heidi Thornquist
 - Workshop answers whether either of these make sense:
 - Trilinos in LinBox or JPlex?
 - Trilinos over finite fields?

![Diagram](image)

- Algorithms
- Matrix Ops
- Scalar Ops

CTT homology
Computational Topology Trilinos
Betti numbers and generators

Trilinos

Anasazi/Belos
null-space, smith-normal form

Tpetra (embedded GMP,...)
Application talks

- **Applications**
 The Saturday afternoon session focuses on laboratory applications, especially those that are not currently using topology, but could. Format consists of an overview talk, together with a discussion session to explore what is possible. The intent is for application owners to engage topology experts for help in solving their problems, with the potential for longer term partnerships.

- **Speakers** are asked to address the following aspects of their applications:
 - geometry, if any
 - dimension: 3d, higher-d, arbitrary-d
 - questions needing solution methods
 - interesting structural features one would like to discover and compute

- **40 minutes = 25 talk + 15 discussion**
Partnership opportunities
(snapshots, not a workshop program overview)

- **SNL topology-ready applications**

 Red = talk or person at CAT Workshop

 - Morse-Smale for understanding combustion science
 - J. Chen, Ray Grout, Valerio Pascucci, Janine Bennett, David Thompson, ...

 - Fracture and fragmentation in meshes
 - Alejandro Mota

 - Foam material analysis
 - L. Romero

 - Solid Model decomposition and parameterization, defecturing
 - Tamal Dey (non-SNL). also SNL apps

 - Sensor networks;
 - R. Ghrist (U. Penn). also SNL apps

 - Topology in 2d image analysis
 - Kurt Larson, Carl Diegert

 - Discrete combinatorial optimization fitness landscapes (tentative)
 - Jean-Paul Watson, Shawn Martin

 - Manifold cutting on system of loops for dimensional reduction, in e.g. image analysis x-ray tomography, molecular conformations
 - Shawn Martin

 - Text analysis parameter sensitivity
 - Daniel Dunlavy

 - Critical infrastructure network security, Green Grid design
 - W. Hart

 - Transportation planning
 - C. Phillips

 - Radar and signals analysis
 - Michael Robinson (non-SNL). also SNL apps

Tamal Dey gen H_1

Shawn Martin molecular conformation dim. red.

void coalescence graphic from Marian et al. A. Mota

Reflective Particle Tag. K. Larson, C. Diegert
Algorithm talks

• **Algorithmics**
The Sunday morning session focuses on algorithmic challenges. The intended audience is those already familiar with the algorithm basics, rather than application owners.

• Speakers are asked to address one or more of the following aspects of their algorithmic approaches:
 – *algorithmic complexity*, including dependence on genus, dimension, number of vertices, number of simplices, coefficient ring, filtration size, and number of critical points.
 • What's the hope for explicit bounds, tight bounds, and improvements?
 – capabilities for sensitivity analysis and transient features, including Reeb graphs, filtrations, and new math structures
 – application-tailored solutions, e.g. homology generators with specific geometry or cardinality; cycle homotopies
 – visualization techniques that use topology
 – visualization techniques for understanding topology

• 35 minutes = 25 talk + 10 discussion
Labs topology research & development

- SNL
 - Topology for Statistical Modeling of Petascale Data, Jacobi Sets,
 - DoE Office of Science funded 2009
 - P. Pebay, Janine Bennett, David Thompson, M. Rojas, Valerio Pascucci
 - Computational Topology, ASC, homology algorithms and applications
 - Scott Mitchell, Shawn Martin, David Day, Erik Boman, Janine Bennett
 - Optimization manifold exploration, dimensional reduction, molecular conformations
 - Jean-Paul Watson, Shawn Martin
 - Visualization tools, SNL-Univ. Utah partnership to put V. Pascucci’s capabilities in SNL VTK/Titan framework
 - Jason Shepherd, Valerio Pascucci
 - ongoing proposals ...

- LLNL
- LBNL
Panel - summarize

- David Saunders
 Peer-Timo Bremer
 Dmitriy Morozov
 Shawn Martin
 Michael Robinson

- Questions
 - Rank applications in terms of low hanging fruit that topology can pluck.
 - What are the key open problems, or main roadblocks, for advancing algorithms?
 - In particular, comment on scalability, and techniques for high dimensional data. In particular, comment on generalizations of filtrations
 - What new software or software mechanisms/structure would most benefit the community?
 - "New software" means, what techniques would be valuable to have in accessible and general purpose format such as LinBox and Plex? "mechanisms/structure" means, would an open-source effort be helpful? And should general and available versions be developed of Reeb graphs, complex generation methods, or anything else in particular?
Conclusions

• You are at 7,000’ elevation
 – May be hard to sleep
 – Wear sunscreen
 – Drink lots of water
 – Enjoy the guacamole!

• Talk, discuss, meet, participate, brainstorm!

• Slideshow