Data Security and Data Intensive Computing

David L. Black, EMC Corporation
What is it?

- World’s largest and fastest flying fish?
- Or a High Bandwidth Data Transfer Device?
 - With thanks to Jim Gray
Data Security and Data Intensive Computing

• Where does HPC data spend most of its life?
 – Stored “somewhere”, generally not on an HPC machine
 – That “somewhere” is the obvious first place to attack the data.

• HPC machines are not the most important components for data security
 – Q: Does that make data security irrelevant for HPC machines?
 – A: No, like a chain, security is only as strong as its weakest link.

• Data moves between “somewhere” and HPC machines
 – That movement usually involves a network

• This talk: Security framework for networked storage of data
 – What are the threats and how can data be protected?
 – Examples are primarily SAN (Storage Area Network)
 – Most concepts apply to fileservers and HPC filesystems
Storage Networking Technologies

- **Storage Area Networking (SAN)**
 - Provides (virtual) disk volume storage
 - SCSI protocol family (e.g., parallel, Fibre Channel, iSCSI)

- **Network Attached Storage (NAS)**
 - Provides file (and filesystem) storage
 - NFS and CIFS over TCP/IP

- **Parallel HPC filesystems (e.g., Lustre)**
 - Security issues are mostly analogous to NAS
Storage Area Network (SAN) Example

Management Station (Console)

- Data: SCSI, e.g.,
 - Fibre Channel
 - iSCSI
- Mgt.: usually IP
 - SNMP
 - SMI-S (CIM)
- NAS and filesystems share data among hosts and servers
Security Threats

0. Management Attacks & Abuse

1. Uncontrolled Data Access

2. Impersonation (Spoofing)

3. Communication Access
 - Eavesdrop
 - Inject/Modify

4. External Access
 - Media Theft
 - Other access and destruction
Why is management threat number 0?
Top three reasons ...

3. I’m from Boston 😊
 - Thrifty Yankee presenter recycled slide content 😊 😊

2. This is storage – we start counting from zero ...
 - Disk numbers start at 0 (e.g., boot drive or volume)

1. If management isn’t protected, nothing else matters!
 - Full management privileges ≈ root access on a host
Threat 0: Management Attacks & Abuse

• Attacker Goal: Management privileges

• Multiple attack vectors, for example:
 – Obtain authentication credentials (e.g., password in clear)
 – Modify management traffic (e.g., hijack)
 – Perform unauthorized management actions

• Countermeasures: Management Security
 – Authentication & Authorization
 – Log actions and protect logs
 – Secure Channels for management communication
 - Confidentiality, Cryptographic Integrity, and Anti-Replay
Management Security Mechanisms

- Secure Management Interface Protocols
 - Command line interfaces: SSH (secure shell)
 - Web interfaces: SSL/TLS standards

- SNMP (Simple Network Management Protocol)
 - SNMP versions prior to v3 do not support strong security
 - AES is available for SNMPv3
 - Work underway on SSH security framework for SNMPv3

- SNIA SMI-S: New storage management standard
 - SNIA: Storage Networking Industry Association
 - SMI-S: Storage Management Initiative – Specification
 - Web based - reuses existing web standards
 - SSL 3.0, TLS and HTTP basic authentication required
Security Threats: Management

0. Management Attacks & Abuse

- Countermeasures: Mgt. Security
 - Authentication
 - Authorization
 - Logging
 - Secure Channels
Threat 1: Storage Access

1. Uncontrolled Storage Access

- Countermeasure: Access Control
 - SAN: LUN masking and mapping
 - Usually not a concern for NAS or filesystems

- Does not prevent Impersonation
Threat 2: SAN Server Impersonation

2. Impersonation (Spoofing)
 - Countermeasure: Authentication (Proof of identity)
Networked Authentication

• Variety of authentication mechanisms for users
 – Kerberos, certificates, challenge/response tokens, etc.

• The challenge is in the infrastructure
 – Need to integrate with authentication infrastructure
 ▪ Directories (e.g., via LDAP). Kerberos, PKI, etc.
 ▪ Avoids multitude of passwords for each individual
 ▪ Token based mechanisms also need to be integrated
 – Different management domains are an added complication

• Need to authenticate machines in some cases (e.g., SAN)
 – iSCSI has inband authentication (Fibre Channel will soon)
Threat 3: Communication Access

3. Communication Access
 - Eavesdrop
 - Inject/Modify

- Countermeasure: Secure Channel
 - Confidentiality
 - Cryptographic Integrity
 - Anti-Replay
Securing Communication Channels

- **IP Security (IPsec)**
 - Typical use: VPNs
 - Packet-based, operates at IP (layer 3)
 - Can secure CIFS, iSCSI, etc.
 - Being applied to Fibre Channel

- **SSL/TLS and SSH**
 - Typical uses: Web (SSL or TLS), command line interface (SSH)
 - Session-based, operate above TCP (layer 5)

- **Kerberos-based mechanisms**
 - Integrated into NFS
Threat 4: External Data Access

4. External Access
 - Media Theft
 - Other Access

- Countermeasure: Stored Data Security
Stored Data Security

- **Threat: Disclosure of stored data**
 - Threats: media access or theft, including backups

- **Disclosure protection for stored data (often encryption)**
 - Multi-year data lifetime complicates key management

- **Encrypt in place: usually confidentiality-only**
 - No additional space to store cryptographic integrity checks
 - Tweaked encryption modes can prevent block swapping
 - Encrypted tape can provide cryptographic integrity checks

- **Alternative: Application-level encryption**
 - Database row encryption, PGP, encrypted files, etc.

- **Backup tape encryption becoming a best practice**
Regulatory Compliance – A Security Perspective

• Regulatory Compliance threats to stored data:
 – Inability to produce the data
 – Inability to prove the integrity of the data (potentially to a court)

• Industry Response: Fixed Content Storage Systems
 – Lots of examples: EMC Centera, HP RISS, etc.
 – Assurance of data availability
 – Assurance of data integrity

• Analogy to Mandatory Access Controls
 – Overwrite and Delete tightly controlled in Fixed Content design

• NOTE: There are many additional aspects to regulatory compliance beyond security
Networked Data Security Functionality Review

0. Management Security

1. Access Control

2. Authentication (Proof of identity)
 - Confidentiality
 - Cryptographic Integrity
 - Anti-replay

3. Secure Channel

4. Stored Data Security
Some Questions for the Panel

- Different security for data-in-computation vs. data-at-rest?
 - Opportunity to focus security functionality on stored data?

- Security implications of long-term-storage of data?
 - What if data lifetime is much longer than key lifetime?

- Opportunities to leverage commercial developments?
 - FIPS-compliant data encryption?
 - Fixed content systems for compliance?
 - Others?

- What HPC security needs will the IT industry not address?
 - And what should the HPC community do about them?
Questions?