
Marc Snir

Programming Languages for HPC

Is There Life After MPI?

Marc Snir

2 Mar-06

HPCS Assumptions
HPC is hampered by lack of good
programming language support
In particular, the use of MPI leads to low

software productivity
Problem can be resolved by doing research on
new programming languages

Marc Snir

3 Mar-06

Paradigm Shifts
New languages/models succeed only if they
enable new capabilities.

In HPC, the drive has always been the need to
exploit the performance of a new computer
architecture: shift to vector, next to MPP

Obstacles to the introduction of new
languages are higher today than 20 years ago

Weight of existing software
Investment needed to create good compilers and

good ADE’s.

Marc Snir

4 Mar-06

Productivity Wall?

Better language reduces
programming time in some
experiments (for non-expert
programmers and short
programs)
Effect is probably small for
large programs using OOP
and for expert programmers
Advantage may be reduced

or negated if performance
tuning is taken into account

Chart: Courtesy of IBM

Marc Snir

5 Mar-06

Performance Wall (circa 2020)
Extrapolation of current Trends

Single chip performance:
Memory wall: a processor chip executes ~

100Kflop/s in the time needed to satisfy one load;
need ~ 750 pending loads at anytime.
Heterogeneity: deep memory hierarchy and

multiple forms of parallelism on chip
“Everybody” has to face these problems.

Programming models that palliate these problems
will come as a result of broad market need
But HPC community faces them earlier… (low

cache utilization, compute intensive codes)

Marc Snir

6 Mar-06

Performance Wall (circa 2020)
(continued)

Large System Issues:
Global latency: 200 nsec = 0.7 Mflop/s
Efficient use of machines with > billion of

concurrent operations
True, whether one uses many “light nodes” or

fewer “heavy nodes”
Reliability

Problem for any large systems but harder for
large, tightly coupled computations
Jitter, due to hardware, software or application

Marc Snir

7 Mar-06

New Language has a Chance

New language needed, not for software
productivity, but for performance at
Petascale.
While we are at it, we may also improve
software productivity

Marc Snir

8 July 23, 2003

What a New Language Should Do

Address performance issues of large future systems
Express well common HPC programming patterns
Support well performance programming, with
incremental code refinement
Support OO
Take advantage of advances in PL’s: strong typing, type
and memory safety, atomicity, efficient support for
generic programming
Take advantage of advances in compilers: dynamic
compilation, heuristic search, telescoping languages
Coexist with existing languages
Provide state of the art ADE

Largely built on language with large market

Marc Snir

9 Mar-06

PGAS Languages
Partitioned Global Address Space

Fixed number of processes, each with one thread of control
Global partitioned arrays that can be accessed by all
processes

Global arrays are syntactically distinct from local variables
Compiler generates communication code for each access

Limited number of global synchronization calls

Proc 0 Proc n

local variables

global, partitioned
array

CAF (Fortran) , UPC (C), Titanium (Java)

Marc Snir

10 Mar-06

Co-Array Fortran
Global array ≡ one extra dimension

integer a[*] - one copy of a on each process
real b(10)[*] - one copy of b(10) on each process
real c(10)[3,*] – one copy of c(10) on each

process; processes indexed as 2D array

SPMD
code executed by each process independently
communication by accesses to global arrays
split barrier synchronization

notify_team(team) sync_team(team)

Marc Snir

11 Mar-06

Unified Parallel C
(Static) global array is declared with qualifier shared

shared int q[100] – array of size 100 distributed round-
robin
shared [*] int q[100] – block distribution
shared [3] int q[100] – block-cyclic distribution
shared int* q – local pointer to shared

SPMD model
code executed by each process independently
communication by accesses to global arrays

global barrier or global split barrier
upc_barrier, upc_notify, upc_wait

simple upc_forall: each iteration is executed on process
specified by affinity expression

Marc Snir

12 Mar-06

X10 (IBM)
Based on Java
Fixed number of places

places could migrate
Each datum has one fixed place

arrays can be distributed
Each place supports variable number of threads

thread can be spawned on locale
Remote data can be accessed or updated only by
spawning asynchronously remote activities (which
may return a value – future)
Synchronization constructs: “finish”, atomic sections
and clocks

Marc Snir

13 Mar-06

Chapel (Cray)
Not based on existing language, but supports OO, and
generic programming
Data is distributed over “locales” – fixed location

Can add cache protocol (?)
Mostly data parallelism

Array expressions
generalized forall

Cobegin for parallel blocks
Execution location may be controlled (in foralls and parallel
blocks) via “on” expression
Each thread can touch any variable

Weak memory consistency model
Support for atomic sections
Support for parallel reductions

Marc Snir

14 Mar-06

Fortress (Sun)
Not based on existing language

Safety features of Java, support for OO and generic
programming, “math-like” syntax, support for vectors,
matrices, etc.

Shared global address space
Loops are parallel by default
data and loop iterates are distributed

distribution is defined by type with a distribution policy
defined by a type-associated library (standard or user
defined)

Support for atomic sections
Language is extendible via libraries that have
syntactic and semantic compiler support
(telescoping languages, Rose…)

Marc Snir

15 Mar-06

Fortress Syntax

Marc Snir

16 Mar-06

Key Ideas
Use of global name space (Convenience; All)
Locales are explicit entities (Essential for

managing locality; all but Fortress)
“Local” and “Global” data accesses are
syntactically distinct (Essential for efficient
compilation; all)
Extensibility (Fortress)

Marc Snir

17 Mar-06

Requirements for Efficient Use of
Global Name Space

Names of data and threads are independent
of their location
Arrays are distributed (all)
Rich set of distributions; e.g. block-block,
user-defined (Chapel, Fortress)
Arrays can be redistributed (possible in
Fortress via suitable library)
Computations can be dynamically allocated
and reallocated (?)

Marc Snir

18 Mar-06

Why Dynamic Data Redistribution?

courtesy Steve Ashby

Marc Snir

19 Mar-06

Why Dynamic Process Migration?

courtesy Steve Ashby

Marc Snir

20 Mar-06

Locale Virtualization
Static model: Parallel programs written for constant
number of processors, running at same speed and
with same storage

Most new languages use fixed number of locales

Programs written for static model do not compose
Composition requires either separate set of processors or

transfer of control on all processors

Need virtualized locales (Fortress? X10?)
Multiple gains accruing from virtualization
load balancing, communication/computation overlap,
communication aggregation, improved cache performance…

Marc Snir

21 Mar-06

New Languages -- Diagnostic
Each of the proposed languages would be an
advance over MPI, if properly implemented
All of the proposed languages still miss key
features
None address directly node performance
bottlenecks and scaling problems
X10, Chapel and especially Fortress require
sophisticated compiler technology

Marc Snir

22 Mar-06

Non Technical Obstacles
It takes money to make a good compiler;
there is no market for HPC unique
optimizations
It takes time to make a good compiler; there
is no funding mechanism for a sustained 5
years development effort
It takes people to make a good compiler;
there is no independent compiler company

Should hw vendors develop the HPC ADE?

Marc Snir

23 Mar-06

Minimal Solution Beyond MPI
Compiled communication, to avoid software
overhead

Possibly, inlining and optimization of key MPI calls
Alternatively, simple language extensions for

access and update of remote variables (v; v@proc)
Not that different from CAF!

Process virtualization, to support
composability, load balancing,
communication/computation overlap,
communication aggregation, improved cache
performance…

Marc Snir

24 Mar-06

A Good ADE is More than Language

Porting tools
Good support for performance tuning

Tools for refactoring
Notation for capturing tuning decisions

Good observability
integrated performance stream mining

Marc Snir

25 Mar-06

Summary
HPC is hampered by lack of good software
support
Language is only part of the problem

Most obstacles are not technological
Key issues for petascale computing are not
yet being addressed

HPCS is driving high quality parallel computing
language research, but this research pays little
attention to petascale

	 Programming Languages for HPC
	HPCS Assumptions
	Paradigm Shifts
	Productivity Wall?
	Performance Wall (circa 2020)�	Extrapolation of current Trends
	Performance Wall (circa 2020)�	(continued)
	New Language has a Chance
	What a New Language Should Do
	PGAS Languages�Partitioned Global Address Space
	Co-Array Fortran
	Unified Parallel C
	X10 (IBM)
	Chapel (Cray)
	Fortress (Sun)
	Fortress Syntax
	Key Ideas
	Requirements for Efficient Use of Global Name Space
	Why Dynamic Data Redistribution?
	Why Dynamic Process Migration?
	Locale Virtualization
	New Languages -- Diagnostic
	Non Technical Obstacles
	Minimal Solution Beyond MPI
	A Good ADE is More than Language
	Summary

