Data-intensive computing is easy
Data-intensive computing is hard

Pete Wyckoft
OSC

pw@osc.edu
/ Mar 2006



OSC Parallel Storage

RAIDO of 4 RAIDS5 8+1
SATA 7.3 TB total each

PVFS2:/pvfs
PVFS2:/pvfs-ib

IB

117 TB total

IB

GigE

16 dual P4 servers

GigE

GigE

EEE 6 A0 -G EEO @

112 dual P4 nodes 144 dual P4 nodes

262 IA64 nodes



OSC /home Storage

RAIDO of 4 RAIDS5 8+1
FC 7.3 TB each

51 TB total

@@ - @ 7airssener

GigE

NFSv3: /a, /b, ..., /g

112 dual P4 nodes 144 dual P4 nodes 262 IA64 nodes



///




Access Methods

* Internal
- MPI to /pvfs
- MPI to /home (not recommended)
- POSIX to /pvfs (not recommended)
- POSIX to /home (frequently discouraged)
- POSIX to /tmp, cp to /home

* External
— ssh, sftp
— globus
— web portals




Data-intensive computing is easy
as long as you do everything exactly right

* Streaming, big reads or writes

— lots of disks and hosts, no problem

— use separate files

— Issue large operations

— don't mix reads and writes

— make sure nobody else is using the system

* Use a database

= if your app is small-data SQL, no problem
* High-speed wide-area

— also easy if your app Is remote copy



Data-intensive computing is hard

* APIs are a mess
- POSIX: open, close, read, write, seek
— MPI: rocket scientists only
- Matlab, python, ...: object-oriented but don't look
under the hood
- HDF5, pnetCDF: OO yet difficult

* APl suggestions
— application specific is most useful

- but hard to standardize, teach, implement
— checkpoint is almost working



Even implementing APIs are hard

* Available hardware poorly fits app needs

* Must tune each API for
— programming language
— file system (parallel and local)
— storage network architecture
— storage servers and disks
— batch environment



Computing paradigm is wrong

* |/O performance problems are a symptom of
the overall disease

* Obsession with data is harmful

* Computing is about orchestrating data motion,

not algorithms or science

— processor-centric designs

— 4-5 levels of mem cache (write buf, memory buf)

— disk caching in client, server, controllers, disks

— explicit cache management instructions (proc, disk)



Good luck “computing” tomorrow

* Still processor centric

But processors even farther from data
— multicore unibus
— cell memory-less procs

Processing is trivial

Moving data around is difficult
Recompute rather than reread
Build smart storage systems



