
Transforming
Computer System

Design

Derek Chiou
University of Texas at Austin

Electrical and Computer Engineering

Supported in part by DOE, NSF, SRC,
Bluespec, Intel, Xilinx, IBM, and Freescale

3/12/2009 SOS 13 Workshop, Hilton Head, SC

First, Some Terminology
Host

The system on which a simulator runs
E.g.,

Dell 390 with a single 1.8GHz Core 2 Duo, 4GB of RAM,
10K RPM Seagate HD
A Xilinx XUP board

Target
The system being modeled
Eg.,

Alpha 21264 processor
Dell 390 with a single 1.8GHz Core 2 Duo, 4GB of RAM,
10K RPM Seagate HD

2

3/12/2009 SOS 13 Workshop, Hilton Head, SC

Simulation

Many large computers used to simulate physical world
Simulators (generally) get faster as computers get faster

Real world does not increase in complexity

Such simulators are fantastically capable, and getting better, quickly

3

3/12/2009 SOS 13 Workshop, Hilton Head, SC

Except For Simulating Computers

Accurate simulators are slow
x86 1KIPS-10KIPS (Intel/AMD)

3GIPS processor for 1 sec take 83 hours at 10KIPS
Simulating 2 minutes takes over 1 year

Getting slower
Unlike physical world, computers grow in
complexity faster than they get faster

More complex cores, more cores, more features, etc.
Slowing down by a factor of 2, relative to target,
per year (Murkherjee, Intel)

4

Why Faster Simulators?
Why not run many short simulations in parallel?

Cannot run full, unmodified, unbenchmarked, software

Better architect computer systems before they are built
Speed enables longer , heavier evaluation of software on future hardware

what architectural mechanisms improve database/game speeds?
Facilitate during co-design of hardware and software

E.g., Intel and Microsoft making a system that works well together
Need to be able to execute sufficient cycles to run Microsoft software

Reduce/eliminate work by transforming simulator to implementation
Tune software for correctness, performance, and power after real
system exists

Provide full visibility at useable speeds
Difficult/impossible to achieve on a real system

Requires Unified Simulator for Architects, Designers, Software,
Algorithms

3/12/2009 SOS 13 Workshop, Hilton Head, SC 5

3/12/2009 SOS 13 Workshop, Hilton Head, SC

Benefits of a Unified Simulator

A common sandbox for Arch/RTL/Software
Promotes sharing, information transferred
immediately
Write/verify once, eliminating ambiguity, wasted work,
effort to keep simulators consistent
Work proceeds in parallel

Architecture/software/algorithms co-developed
Simulator runs software at interactive speeds
while predicting performance, power,
temperature, etc.
Generate implementation from simulator???

6

But, a Unified Simulator has
Unified Requirements

Architecture
Timely: enough time to make decisions
Accurate: compare architectural mechanisms
Flexible: quick changes
Transparent: full visibility with little/no performance impact
Power: compare architectural mechanisms

Software
Fast: (~10MIPS+/host in accurate mode, 20-100MIPS+
/host nearly accurate)
Full-system: run unmodified operating systems,
applications,…
Bottleneck Detection: automatically find problems

Implementation
Accurate: produce cycle-accurate numbers
Synthesizable: convert to implementation
Reducible: convert back to a simulator

3/12/2009 SOS 13 Workshop, Hilton Head, SC 7

3/12/2009 SOS 13 Workshop, Hilton Head, SC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cycle-Accurate Simulators

Rename

RS

Br ALU

Decode

Fetch

dTLB

L2

L1

iTLB L1

ROB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

If simulator models every transition correctly,
it models performance correctly

Many lightweight operations that occur in parallel

R2 = MEM[R1]
R3 = R2 + R2
R4 = R4 + R4

Time

8

Separate Entity
(processor,

FPGA resources)

3/12/2009 SOS 13 Workshop, Hilton Head, SC

FPGA

FPGA-Accelerated Simulation
Technologies (FAST) Simulator
Architecture

Rename

RS

Br ALU

Decode

Fetch

dTLB

L2

L1

iTLB L1

ROB

Functional Model

Timing Model

MICRO 2007

Parallelize Timing ModelParallelize FM-TM

Functional model speculates at simulator level
Roll back required if functional path != timing path

Branch misprediction likely to require 2 rollbacks
Functional model runs ahead, improves parallelism

Parallel slowdown due to communication?
FM runs ahead, speculatively, round-trip communication infrequent
Round-trip communication only when functional path!=timing path

The better the target micro-architecture, the faster the simulator

Instructions executed, sent to TM

9

3/12/2009 SOS 13 Workshop, Hilton Head, SC

Timing Models are Simple
Compared to Implementation

TraceTrace

0x2

addr
inst

Instruction
Memory

Add

rd1

GPR File

rr1
rr2

wr
wd rd2

we

Immed.
Extend

M
0

2

raddr
waddr

wdata

rdata

re

Data
Memory

ALU
algn

1

3

wePC A

B

MD1

Y

MD2

IR

IR IR IR

R

Bypass/interlock I1

I2

Small, relatively simple
Eventually as simple as software timing model?

Easy to modularize, compose from
libraries

makes hardware easier

10

Why are FAST Timing Models Simpler
than Implementation?

Basically no functionality
Multiple host cycles per target cycle

Can write a loop for a CAM
Not trying to meet timing

Multiple host cycles helps with that
Many modules are just delays

Fixed cycle ALUs
Can approximate when desired

Cache studies (have all addresses) without detailed core
Often derived from previous micro-architecture

3/12/2009 SOS 13 Workshop, Hilton Head, SC 11

3/12/2009 SOS 13 Workshop, Hilton Head, SC

FAST Prototype Overview

Software (QEMU modified with trace/rollback) functional model
Eventually hardware functional model, but software sim exists

FPGA-based timing model written in Bluespec
Complex OoO micro-architecture fits in a single FPGA

trace

Functional
Model

Software

Timing
Model

Bluespec HDL

Processor FPGA
DRC
Computer

HT Xilinx FPGAPowerPC 405 Xilinx/Intel
ACP

FSB

12

3/12/2009 SOS 13 Workshop, Hilton Head, SC

Old FAST on DRC Platform
(~1.2MIPS, 1000x Intel/AMD)

13

3/12/2009 SOS 13 Workshop, Hilton Head, SC

Current Simulator
Performance

0

2

4

6

8

10

12

14

16

gshare

97% BP

100% BP

DRC 100%

ACP 100% BP

Includes Operating System CodeIncludes Operating System Code

14

Are Simulation/Implementation
Two Forms of Same Thing?

Both can
Run entire software stack
Accurately predict performance

Analogous to frequency vs time domain in DSP?
Easier to filter in freq domain than in time domain
Transform & operate can make things easier

Requires “transforms” to convert back and forth
High speed simulation in simulator domain
Verify in implementation domain

3/12/2009 SOS 13 Workshop, Hilton Head, SC 15

FAST Capability Status
Architect

Timely: enough time to make decisions
Accurate: compare architectural mechanisms
Flexible: quick changes
Transparent: full visibility with little/no performance impact
Performance: prediction
Power: prediction

Software
Fast (~10MIPS/host, 20-50-100MIPS+ /host nearly accurate)
Full-system: run unmodified operating systems, applications,…
Bottleneck Detection: automatically find performance problems

Implementation
Accurate: produce cycle-accurate numbers
Synthesizable: convert to implementation
Reducible: convert back to a simulator

3/12/2009 SOS 13 Workshop, Hilton Head, SC 16

3/12/2009 SOS 13 Workshop, Hilton Head, SC

Acknowledgements
Students

Dam Sunwoo (FM)
Nikhil Patil (TM, tools, FAST2Imp)
Bill Reinhart (TM connector)
Eric Johnson (TM, machine learning + arch)
Joonsoo Kim (TM, Implementation2FAST)
Gene Wu (FM)

Funding, Equipment
DOE, NSF, SRC, Sandia Graduate Fellowship
Intel, IBM, Xilinx, Freescale

Software, tools
Bluespec, Xilinx

Open-source full system simulators
QEMU, Bochs

17

Conclusions
Accurately simulates next generation on current generation
at roughly current generation speeds

Within a factor of 100 or so today
Could be within a factor of 2 to 10 in future

Timing model speed is current limit
Lower accuracy faster

Supports integrated software and hardware exploration
Easy to do “what-if” experiments

Map target software functions to arbitrary timing
Arbitrary sized matrix multiply in 1 target cycle

Software performance/power tuning tool
Simulator scaling can be purchased

More host systems communicating over standard host
interconnect

3/12/2009 SOS 13 Workshop, Hilton Head, SC 18

