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First, Some Terminology
Host

The system on which a simulator runs
E.g.,

Dell 390 with a single 1.8GHz Core 2 Duo, 4GB of RAM, 
10K RPM Seagate HD
A Xilinx XUP board

Target
The system being modeled
Eg.,

Alpha 21264 processor
Dell 390 with a single 1.8GHz Core 2 Duo, 4GB of RAM, 
10K RPM Seagate HD
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Simulation

Many large computers used to simulate physical world
Simulators (generally) get faster as computers get faster

Real world does not increase in complexity

Such simulators are fantastically capable, and getting better, quickly
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Except For Simulating Computers

Accurate simulators are slow
x86 1KIPS-10KIPS (Intel/AMD)

3GIPS processor for 1 sec take 83 hours at 10KIPS
Simulating 2 minutes takes over 1 year

Getting slower
Unlike physical world, computers grow in 
complexity faster than they get faster

More complex cores, more cores, more features, etc.
Slowing down by a factor of 2, relative to target, 
per year (Murkherjee, Intel)
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Why Faster Simulators?
Why not run many short simulations in parallel?

Cannot run full, unmodified, unbenchmarked, software

Better architect computer systems before they are built
Speed enables longer , heavier evaluation of software on future hardware

what architectural mechanisms improve database/game speeds?
Facilitate during co-design of hardware and software

E.g., Intel and Microsoft making a system that works well together
Need to be able to execute sufficient cycles to run Microsoft software

Reduce/eliminate work by transforming simulator to implementation
Tune software for correctness, performance, and power after real 
system exists

Provide full visibility at useable speeds
Difficult/impossible to achieve on a real system

Requires Unified Simulator for Architects, Designers, Software, 
Algorithms
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Benefits of a Unified Simulator

A common sandbox for Arch/RTL/Software
Promotes sharing, information transferred 
immediately
Write/verify once, eliminating ambiguity, wasted work, 
effort to keep simulators consistent
Work proceeds in parallel

Architecture/software/algorithms co-developed
Simulator runs software at interactive speeds 
while predicting performance, power, 
temperature, etc.
Generate implementation from simulator???
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But, a Unified Simulator has 
Unified Requirements

Architecture
Timely: enough time to make decisions
Accurate: compare architectural mechanisms
Flexible: quick changes
Transparent: full visibility with little/no performance impact
Power: compare architectural mechanisms

Software
Fast: (~10MIPS+/host in accurate mode, 20-100MIPS+ 
/host nearly accurate)
Full-system: run unmodified operating systems, 
applications,…
Bottleneck Detection: automatically find problems

Implementation
Accurate: produce cycle-accurate numbers
Synthesizable:  convert to implementation
Reducible: convert back to a simulator
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Cycle-Accurate Simulators

Rename

RS

Br ALU

Decode

Fetch
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If simulator models every transition correctly, 
it models performance correctly

Many lightweight operations that occur in parallel

R2 = MEM[R1]
R3 = R2 + R2
R4 = R4 + R4

Time
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Separate Entity
(processor, 

FPGA resources)
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FPGA

FPGA-Accelerated Simulation 
Technologies (FAST)  Simulator 
Architecture

Rename
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iTLB L1

ROB

Functional Model

Timing Model

MICRO 2007

Parallelize Timing ModelParallelize FM-TM

Functional model speculates at simulator level
Roll back required if functional path != timing path

Branch misprediction likely to require 2 rollbacks
Functional model runs ahead, improves parallelism

Parallel slowdown due to communication?
FM runs ahead, speculatively, round-trip communication infrequent
Round-trip communication only when functional path!=timing path

The better the target micro-architecture, the faster the simulator

Instructions executed, sent to TM
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Timing Models are Simple 
Compared to Implementation
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Small, relatively simple
Eventually as simple as software timing model?

Easy to modularize, compose from 
libraries

makes hardware easier
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Why are FAST Timing Models Simpler 
than Implementation?

Basically no functionality
Multiple host cycles per target cycle

Can write a loop for a CAM
Not trying to meet timing

Multiple host cycles helps with that
Many modules are just delays

Fixed cycle ALUs
Can approximate when desired

Cache studies (have all addresses) without detailed core
Often derived from previous micro-architecture
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FAST Prototype Overview

Software (QEMU modified with trace/rollback) functional model
Eventually hardware functional model, but software sim exists

FPGA-based timing model written in Bluespec
Complex OoO micro-architecture fits in a single FPGA

trace

Functional
Model

Software

Timing
Model

Bluespec HDL

Processor FPGA
DRC
Computer

HT Xilinx FPGAPowerPC 405 Xilinx/Intel
ACP

FSB
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Old FAST on DRC Platform
(~1.2MIPS, 1000x Intel/AMD)
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Current Simulator 
Performance
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Are Simulation/Implementation 
Two Forms of Same Thing?

Both can 
Run entire software stack
Accurately predict performance

Analogous to frequency vs time domain in DSP?
Easier to filter in freq domain than in time domain
Transform & operate can make things easier

Requires “transforms” to convert back and forth
High speed simulation in simulator domain
Verify in implementation domain
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FAST Capability Status
Architect

Timely: enough time to make decisions
Accurate: compare architectural mechanisms
Flexible: quick changes
Transparent: full visibility with little/no performance impact
Performance: prediction
Power: prediction

Software
Fast (~10MIPS/host, 20-50-100MIPS+ /host nearly accurate)
Full-system: run unmodified operating systems, applications,…
Bottleneck Detection: automatically find performance problems

Implementation
Accurate: produce cycle-accurate numbers
Synthesizable:  convert to implementation
Reducible: convert back to a simulator
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Conclusions
Accurately simulates next generation on current generation 
at roughly current generation speeds

Within a factor of 100 or so today
Could be within a factor of 2 to 10 in future

Timing model speed is current limit
Lower accuracy faster

Supports integrated software and hardware exploration
Easy to do “what-if” experiments

Map target software functions to arbitrary timing
Arbitrary sized matrix multiply in 1 target cycle

Software performance/power tuning tool
Simulator scaling can be purchased

More host systems communicating over standard host 
interconnect
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