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The Stanford Pervasive R
Parallelism Laboratory IBRATR

m Goal: the parallel computing platform for 2012

= Make parallel application development practical for the
average software developers

= Parallel applications without parallel programming

m PPL Is a combination of
= Leading Stanford researchers across multiple domains
= Applications, languages, software systems, architecture

= Leading companies in computer systems and software
= Sun, AMD, Nvidia, IBM, Intel, HP, NEC

= An exciting vision for pervasive parallelism
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Transactional Memory (TM) —

| I\/Iemory transaction [Knight’86, Herlihy & Moss’93]
= An atomic & isolated sequence of memory accesses
= Inspired by database transactions

= Atomicity (all or nothing)
= At commit, all memory updates take effect at once
= On abort, none of the memory updates appear to take effect

= Isolation
= No other code can observe memory updates before commit

m Serializability
= Transactions seem to commit in a single serial order
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Programming with TM LAHURMHHY%

int deposit(account, amount) int withdraw(account, amount)
ayoohcofized(account) { ayoohcofized(account) {
int t = bank.get(account); int t = bank.get(account);
t = t + amount; t = t — amount;
bank.put(account, t); iIT (t<0) return (0);
return (1); bank.put(account, t);
return (1);
+

m Declarative synchronization
= Programmers says what but not how
= No explicit declaration or management of locks

® System implements synchronization
= Typically with optimistic concurrency [Kung’'8i]
= Slow down only on true conflicts (R-W or W-W)




PRGN
T
Advantages of TM LBIRAT

m Easy to use synchronization construct
m As easy to use as coarse-grain locks
s Programmer declares, system implements

m Performs as well as fine-grain locks
= Automatic read-read & fine-grain concurrency
= No tradeoff between performance & correctness

m Failure atomicity & recovery
= No lost locks when a thread fails
= Failure recovery = transaction abort + restart

m Composability
m Safe & scalable composition of software modules
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m Data versioning for updated data
= Manage new & old values for memory data
= Deferred(lazy) updates (write-buffer) vs direct updates (undo-loQ)

m  Conflict detection for shared data
= Detect R-W and W-W for concurrent transactions
= Track the read-set and write-set of each transaction
= Check during execution (pessimistic) or at the end (optimistic)

m ldeal implementation

Software only: works with current & future hardware
Flexible: can modify, enhance, or use in alternative manners
High performance: faster than sequential code & scalable
Correct: no incorrect or surprising execution results
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Software Transactional Memory L

STM Compiler

Low-level

High-level

ListNode n; ListNode n;

n = head; n = &head) ;

iIT (n 1= NULL) { iIT (n = NULL) {
1stNode t;

L
head = head.next; t

&head.next);
&head, t);

m Software barriers for TM bookkeeping
= Versioning, read/write-set tracking, commit, ...
= Using locks, timestamps, object copying, ...

m Can be optimized by compilers [AdI-Tabatabai’06, Harris’06]
m Requires function cloning or dynamic translation
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m 2X to 8x overhead due to SW Dbarriers

= After compiler optimizations, inlining, ...
m Short term: demotivates parallel programming

= TM coding easier than locks but harder than sequential...
m Long term: energy wasteful
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Hardware TM (HTM) i F

m HW support for common case TM behavior
= Initial TMs used hardware [Knight’86, Herlihy & Moss’93]
= All HTMs include software too...

m Rationale
= HW can track all loads/stores transparently, w/o overhead
= HW is good at fine-grain operations within a chip
= We have transistors to spare in multi-core designs
= Thanks to Moore’s law...

m Basic HW mechanisms
s Cache metadata track read-set & write-set
s Caches buffer deferred updates
= Coherence protocol does conflict detection
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CPU 1 CPU 2 CPU 3 CPU N

Coherence Network
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Caches Caches - \ Caches
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off-chip & memory channels

= HTM works with bus-based & scalable networks
= HTM works with private & shared caches
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4 CPU m The details in [ISCA’04,
PACT’05, HPCA’07]

Registers ALUs

N | TMstate | y
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Tag
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m  CPU changes
= Register checkpoint (available in many CPUs)
= TM state registers (status, pointers to handlers, ...)
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m Cache changes

m The details in [ISCA’04,
PACT’'O5, HPCA’'07]

= R bit indicates membership in read-set
= W bit indicates membership in write-set
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m  Transaction begin
= Initialize CPU & cache state
= Take register checkpoint
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4 ) Xbegin
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reorsters ALUs
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m Load operation
= Serve cache miss if needed
= Mark data as part of read-set
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m Store operation
= Serve cache miss if needed (eXclusive if not shared, Shared otherwise)
= Mark data as part of write-set
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m Fast, 2-phase commit
= Validate: request exclusive access to write-set lines (if needed)
= Commit: gang-reset R & W bits, turns write-set data to valid (dirty) data
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m Fast conflict detection & abort
= Check: lookup exclusive requests in the read-set and write-set
= Abort: invalidate write-set, gang-reset R and W bits, restore checkpoint
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3-tier Server (Vacation)
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m Scalable performance, up to 7x over STM [isca07]
= Within 10% of sequential for one thread
= Uncommon HTM cases not a performance challenge
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m TCC architecture approach

= Programmer determines coherence and consistency points
=« At transaction boundaries

= Use caches for fast local buffering
= Use coherence protocol for commit & violation detection

m Distinguishing feature
= Re-design the coherence protocol just for transactions
= All communication at transaction commit points

= No need to support other fine-grain communication
= Simpler protocol, few short messages, ...
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m Scalable TCC implementation

= Directory-based, 2-phase commit, traffic filtering
= Excellent scalability

= Lazy commit not an overhead
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Communication Landscape
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Methodology IBRATR

m Conventional approaches are useful

= Develop app & SW system on existing platforms
= Multi-core, accelerators, clusters, ...

= Simulate novel HW mechanisms
= No realistic software

® Need some method that bridges HW & SW research
= Makes new HW features available for SW research
= Does not compromise HW speed, SW features, or scale
= Allows for full-system prototypes
= Needed for research, convincing for industry, exciting for students

m Approach: commodity chips + FPGAs in memory system
= Commodity chips: fast system with rich SW environment
m FPGAs: prototyping platform for new HW features
= Scale through cluster arrangement
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FARM: Flexible Architecture
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FARM: Flexible Architecture
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FARM: Flexible Architecture M >
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FARM Prototype it P
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Procyon System T

= Hardware platform for FARM
= From A&D Technology, Inc

= Full system board Y
= AMD Opteron Socket F
= Two DDR2 DIMMs
= USB/eSATA/VGA/GIgE
= Sun OpenSolaris OS

= Extra CPU board
= AMD Opteron Socket F

m FPGA Board
m Altera Stratix Il FPGA

= All connected via HT backplane
= Also provides PCle and PCI
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= Need a full system vision for pervasive parallelism

= Applications, programming models, programming languages,
software systems, and hardware architecture

m Key Initial ideas
= Domain-specific languages
= Programmable memory systems (TM)
= Real system prototypes
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