PERVASIE
PARALLELISN
LABORATORY

Programmable Transactional
Memory

Kunle Olukotun
Pervasive Parallelism Laboratory
Stanford University

SO0S-13

PERVASE
The Memory Wall? Hppl

Memory stacked on processor

i0.005

0.01

Conventional architecture
.05

Multicore Is Bad News
For Supercomputers
Samuel K. Moore

0.0z

0.025

UL —

0.035—

DL

Performance (seconds)

Processor cores
0045+ - -

2 & H 16 47 b

Sharing and scheduling can help!

The Stanford Pervasive R
Parallelism Laboratory IBRATR

m Goal: the parallel computing platform for 2012

= Make parallel application development practical for the
average software developers

= Parallel applications without parallel programming

m PPL Is a combination of
= Leading Stanford researchers across multiple domains
= Applications, languages, software systems, architecture

= Leading companies in computer systems and software
= Sun, AMD, Nvidia, IBM, Intel, HP, NEC

= An exciting vision for pervasive parallelism

PERVASIYE I

PARALLELIS

The PPL Vision Tl

Applications Scientific Virtual Personal
Engineering Worlds Robotics I

=~

Domain .

Scripting Probabilistic

Specific Renderin
g .
Languages (Delite)

Data
nformatics

Machine
Learning
(Delite)

Parallel Object Language

Common Parallel Runtime

Explicit / Static Implicit /7 Dynamic

Hardware Architecture
OO0OO Cores SIMD Cores Threaded Cores

Programmable Scalable Isolation & Pervasive
Hierarchies Coherence =~ Atomicity ~ Monitoring

Hardware
Prototypes

CPU
GPU
FPGA

PERVASIY
| PARALLELISM
Transactional Memory (TM) —

| I\/Iemory transaction [Knight’86, Herlihy & Moss’93]
= An atomic & isolated sequence of memory accesses
= Inspired by database transactions

= Atomicity (all or nothing)
= At commit, all memory updates take effect at once
= On abort, none of the memory updates appear to take effect

= Isolation
= No other code can observe memory updates before commit

m Serializability
= Transactions seem to commit in a single serial order

d '
. . ALY
Programming with TM LAHURMHHY%

int deposit(account, amount) int withdraw(account, amount)
ayoohcofized(account) { ayoohcofized(account) {
int t = bank.get(account); int t = bank.get(account);
t = t + amount; t = t — amount;
bank.put(account, t); iIT (t<0) return (0);
return (1); bank.put(account, t);
return (1);
+

m Declarative synchronization
= Programmers says what but not how
= No explicit declaration or management of locks

® System implements synchronization
= Typically with optimistic concurrency [Kung’'8i]
= Slow down only on true conflicts (R-W or W-W)

PRGN
T
Advantages of TM LBIRAT

m Easy to use synchronization construct
m As easy to use as coarse-grain locks
s Programmer declares, system implements

m Performs as well as fine-grain locks
= Automatic read-read & fine-grain concurrency
= No tradeoff between performance & correctness

m Failure atomicity & recovery
= No lost locks when a thread fails
= Failure recovery = transaction abort + restart

m Composability
m Safe & scalable composition of software modules

I PERVASIV:
Implementlng Memory T
Transactions LBIRATY

m Data versioning for updated data
= Manage new & old values for memory data
= Deferred(lazy) updates (write-buffer) vs direct updates (undo-loQ)

m Conflict detection for shared data
= Detect R-W and W-W for concurrent transactions
= Track the read-set and write-set of each transaction
= Check during execution (pessimistic) or at the end (optimistic)

m ldeal implementation

Software only: works with current & future hardware
Flexible: can modify, enhance, or use in alternative manners
High performance: faster than sequential code & scalable
Correct: no incorrect or surprising execution results

PRIASY
' PIRALELSH R
Software Transactional Memory L

STM Compiler

Low-level

High-level

ListNode n; ListNode n;

n = head; n = &head) ;

iIT (n 1= NULL) { iIT (n = NULL) {
1stNode t;

L
head = head.next; t

&head.next);
&head, t);

m Software barriers for TM bookkeeping
= Versioning, read/write-set tracking, commit, ...
= Using locks, timestamps, object copying, ...

m Can be optimized by compilers [AdI-Tabatabai’06, Harris’06]
m Requires function cloning or dynamic translation

IS
PRALLS
STM Performance Challenges LAHI]RMI]HY%

3-tier Server (Vacation)

/
4

z

/
”

'
-

ST o0V N

2 4 8 16
Processors

m 2X to 8x overhead due to SW Dbarriers

= After compiler optimizations, inlining, ...
m Short term: demotivates parallel programming

= TM coding easier than locks but harder than sequential...
m Long term: energy wasteful

PERVASI

Hardware TM (HTM) i F

m HW support for common case TM behavior
= Initial TMs used hardware [Knight’86, Herlihy & Moss’93]
= All HTMs include software too...

m Rationale
= HW can track all loads/stores transparently, w/o overhead
= HW is good at fine-grain operations within a chip
= We have transistors to spare in multi-core designs
= Thanks to Moore’s law...

m Basic HW mechanisms
s Cache metadata track read-set & write-set
s Caches buffer deferred updates
= Coherence protocol does conflict detection

PERASNE
. . PARALLESH
Multi-core Chip LAHURAIUHY%

CPU 1 CPU 2 CPU 3 CPU N

Coherence Network

Shared J Shared J _ Shared J

Caches Caches - \ Caches

t 3 s

off-chip & memory channels

= HTM works with bus-based & scalable networks
= HTM works with private & shared caches

PERVASIYE I

.] 2
HTM Design i |

4 CPU m The details in [ISCA’04,
PACT’05, HPCA’07]

Registers ALUs

N | TMstate | y
/ Cache \

Tag

- ~/

m CPU changes
= Register checkpoint (available in many CPUs)
= TM state registers (status, pointers to handlers, ...)

HTM Design

PERVASIVE IS
PARALLELIS P"";,

LABORATORY I

4 CPU

Registers ALUs

\
/ Cache

J
™~

Tag

o

~/

m Cache changes

m The details in [ISCA’04,
PACT’'O5, HPCA’'07]

= R bit indicates membership in read-set
= W bit indicates membership in write-set

SN
| ' i 2
HTM Transaction Execution i x

[A Xbegin «
Load A
Store 5 [1 B

\) LOad C
/ Cache \

Tag

reorsters ALUs

C

" ~/

m Transaction begin
= Initialize CPU & cache state
= Take register checkpoint

SN
| ' i 2
HTM Transaction Execution i x

4) Xbegin
Load A &
Store 5 [1 B

LOad C
%

reorsters ALUs

o

m Load operation
= Serve cache miss if needed
= Mark data as part of read-set

SN
| ' i 2
HTM Transaction Execution i x

4) Xbegin
Load A
Store 5 [B &

LOad C
%

reorsters ALUs

o

m Store operation
= Serve cache miss if needed (eXclusive if not shared, Shared otherwise)
= Mark data as part of write-set

PSHE W
. . RLLESH
HTM Transaction Execution T |

4) Xbegin
Load A
Store 5 [] B

| wsme | Load €
J

Xcommit <&

Registers ALUs

> upg radeX B

o

m Fast, 2-phase commit
= Validate: request exclusive access to write-set lines (if needed)
= Commit: gang-reset R & W bits, turns write-set data to valid (dirty) data

PERVASIYE I

HTM Conflict Detection el 2

4) Xbegin
Load A
Store 5 [1 B
Load C «
Xcommit

Registers ALUs

J
N

<= upgradeX D [V]

9
33

: 5 f upgradeX A

m Fast conflict detection & abort
= Check: lookup exclusive requests in the read-set and write-set
= Abort: invalidate write-set, gang-reset R and W bits, restore checkpoint

PISIE -‘
. PRALELSH
Performance with HTM LAHURAII]HY%

3-tier Server (Vacation)

T o0V N

m Scalable performance, up to 7x over STM [isca07]
= Within 10% of sequential for one thread
= Uncommon HTM cases not a performance challenge

PERVASIE

| PR
TCC Architecture Model ABERTOR

m TCC architecture approach

= Programmer determines coherence and consistency points
=« At transaction boundaries

= Use caches for fast local buffering
= Use coherence protocol for commit & violation detection

m Distinguishing feature
= Re-design the coherence protocol just for transactions
= All communication at transaction commit points

= No need to support other fine-grain communication
= Simpler protocol, few short messages, ...

PERVASIVE
PARALLELISM me
Scalable TCC Performance i

m Scalable TCC implementation

= Directory-based, 2-phase commit, traffic filtering
= Excellent scalability

= Lazy commit not an overhead

PSHE W
L RLLLH
Pure HTMs Have Limitations T «

bayes

“@=HTM
aHybrid TM
. STM

10
Processor Cores

Communication Landscape

3Wsand 1S

Comm. Mech.

Message
passing

CC shared
memory

Stanford TCC

Illinois Bulk

Update_all

Update some

Update _mem

Data_update

wWhen?

Programmer:
send/receive

System:
load, store

Programmer:
transactions

System:
chunks

Programmer:
update_all

Programmer:

update_some

Programmer:

update_mem

Programmer:

data update

What?

Message
buffer

Cache line

Write set

Write set

Write set

Write set

Write set

Address list

PERVASIYE I

PARALLELISH e

LABORATORY

Where?

Processor list

Broadcast/dir
ectory

Broadcast/dir
ectory

Broadcast/dir
ectory

Broadcast/dir
ectory

Processor list

memory

Broadcast,
processor list,
memory

Architecture Research R

Methodology IBRATR

m Conventional approaches are useful

= Develop app & SW system on existing platforms
= Multi-core, accelerators, clusters, ...

= Simulate novel HW mechanisms
= No realistic software

® Need some method that bridges HW & SW research
= Makes new HW features available for SW research
= Does not compromise HW speed, SW features, or scale
= Allows for full-system prototypes
= Needed for research, convincing for industry, exciting for students

m Approach: commodity chips + FPGAs in memory system
= Commodity chips: fast system with rich SW environment
m FPGAs: prototyping platform for new HW features
= Scale through cluster arrangement

FARM: Flexible Architecture
Research Machine

PERVASIE |

PARALLELSH RS '
LABORATORY I I

FARM: Flexible Architecture
Research Machine

PERVASIYE I '
PARALLELISN """ '
LABORATORY IS I

FARM: Flexible Architecture
Research Machine

PERVASIYE |
PARALLELIS
LABORATOR

L Memory j L Memory j

FARM: Flexible Architecture M >

Research Machine s I

(scalable)
[]

Infiniband
Or PCle
Interconnect

FARM Prototype it P

I 275
Procyon System T

= Hardware platform for FARM
= From A&D Technology, Inc

= Full system board Y
= AMD Opteron Socket F
= Two DDR2 DIMMs
= USB/eSATA/VGA/GIgE
= Sun OpenSolaris OS

= Extra CPU board
= AMD Opteron Socket F

m FPGA Board
m Altera Stratix Il FPGA

= All connected via HT backplane
= Also provides PCle and PCI

PRGIE
. i
Conclusions LBIRATIR

= Need a full system vision for pervasive parallelism

= Applications, programming models, programming languages,
software systems, and hardware architecture

m Key Initial ideas
= Domain-specific languages
= Programmable memory systems (TM)
= Real system prototypes

PERVASIVE
PARALLELISM
LABORATORY

