
Industry Panel ― Cray Inc.
What will be your company’s HPC successes in 2012?

SOS 13
Hilton Head, SC
March 10, 2009

Steve Scott
Cray CTO

With users’ relentless appetite for HPC we could expect
systems with 100 PFlops peak soon after ~2012.

What type of systems do you think will first achieve this?
Will they be general-purpose?
How much electrical power will they consume?
What will be the standard way of programming applications
for these systems?

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. Slide 2

First 100PF Systems (Steve’s Guesstimate)
Probably the first 100PF system will use "accelerators"

Recall MD Grape hit a PF in 2006, two years before Roadrunner and Jaguar
Could be FPGAs, more likely GP-GPUs
2013, ~10-25 MW
Maybe could be called general purpose…
General purpose:

Automatic compilation: Drop on your existing parallel codes and go!
Needs to be broadly applicable: not just coarse-grained, localized codes

First truly general purpose machine
2014
1-2 TF sockets (manycore with SIMD extensions)
50-100K sockets (1-2x the size of Jaguar)
~20-30 MW (depending on processors and memory)

Programming
Still mostly MPI
Growing use of hierarchical (OpenMP under MPI)
Growing use of CAF, UPC, Global Arrays and Shmem (Chapel?)

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. Slide 3

Science
Area Code Contact Cores

% of
Peak

Total
Perf Scaling

Materials DCA++ Schulthess 150144 97% 1.3 PF** Weak

Materials LSMS/WL ORNL 149580 76.40% 1.05 PF Weak

Seismology SPECFEM3D UCSD 149784 12.60% 165 TF Weak

Weather WRF Michalakes 70000 5.60% 36 TF Strong

Climate POP Jones 18000 3.00% 5 TF Strong

Combustion S3D Chen 144000 6.00% 83 TF Weak

Fusion GTC PPPL 102000
20 B particles

pushed Weak

Materials LS3DF
Lin‐Wang
Wang 147456 32% 442 TF Weak

** 2008 Gordon Bell prize winner! Mixed precision; 626 TF at 128K cores in 64 bit only.

SOS 13 - Cray (S. Scott) Slide 4 Copyright 2009, Cray Inc.

Petaflop Jaguar XT5 System
Eight Application World Records Set in First Week!

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. Slide 5

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. Slide 6

The HPC industry faces huge challenges including
mounting power consumption, maintaining system
availability with increasing component volumes,
decreasing memory bandwidth per core, software to scale
to millions of processors. Yet vendors seem able to re-
invent solutions on a regular basis.

What paradigm shifts, if any, do you see occurring by 2012?
Where might you look for new partners?

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. Slide 7

Predict No Major Paradigm Shifts by 2012
Minor paradigm shifts

Maybe some more use of accelerators
I believe that we can build compilers that will allow the use of standard
programming models
Skeptical on breadth of applicability
Must significantly reduce synchronization and communication overhead

Maybe some better programming models
PGAS languages are more productive and more efficient.
Next year's Cray XT system will be a great PGAS machine

Parallel compilers and tools will continue to get better
Debugging at scale, automatic performance analysis, adaptive libraries with off-
line optimization, etc.
Automatic parallelization at the node level: cores, threads, vectors

Many areas of potential partnerships
Processors: New microarchitectures, accelerators
Optical signaling technology (AOC for now, directly off package by ~2015)
Local memory packaging: optics, stacking, ?
Tools: debuggers, compilers, etc.
Scalable file systems
Community: Application resiliency, programming languages/models

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. Slide 8

The current world economy is drastically different to any
ever seen in the lifetime of the HPC industry. Credit may
effectively disappear, funds may become more centrally
controlled, hyperinflation may arise from capital
injections, and markets may shrink. Yet HPC users benefit
from healthy competition sustained by the current market
size.

What do you think is your company’s best strategy for
survival?
How do you think HPC customers can realistically help you?

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. Slide 9

Surviving in HPC in the Global Recession
2008 was actually a great year for Cray

We don't focus on the consumer or business markets
Record revenue and gross profit
Nicely profitable except for non-cash write-down of goodwill in 4Q
Repurchased over half our long term debt
Diversified our business with the launch of the Cray CX1 and custom
engineering business unit

How can HPC customers realistically help us?
Keep buying systems – make the case to your management about the value
of HPC
Procure systems based on sustained price-performance on representative
workloads
Talk to us: what do you like and what don't you like about our systems?
Work with us to understand future application characteristics and needs
Work with us on new tool development
Work with us on scaling/testing of very large machines
Be open to new ways of programming where they can help (e.g.: PGAS)

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. Slide 10

A few closing thoughts….

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. Slide 11

Productivity Begins with the Architecture:
A Guidepost to Building Good Systems in 2012

Global shared address space with one-sided data transfers
So that code can easily reference and access objects held in remote nodes
without involvement of code running on those nodes

High bandwidth, low granularity network
So that programs can be written with far less concern about how and when
communication takes place

Latency-tolerant processors
So that compute capabilities do not go idle waiting for data, and
programmers do not have to stage data and computation

Plentiful threading with efficient, lightweight synchronization
So that parallelism can be dynamically exploited at multiple levels in the
code, and programmers need to worry less about load balancing and
synchronization

Adaptive processing capabilities
So that idioms that would benefit from vectorization, streaming, fine-grain
multithreading, or fast sequential processing can execute efficiently, and the
programmer does not have to change the code to fit the paradigm

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. 12

Key Issues Over Next Five Years
Power ('nuff said)
System and application resiliency

500 FIT processor has an expected lifetime of over 100 years
100,000 processors multiple failures per day (Al's "continuous failures")
Forget trying to make hardware MTBF acceptable (deal with failures)
"Easy" to make systems resilient; applications are the really hard part

Local memory bandwidth technologies
Last 30 years: DRAM density has outpaced bandwidth by ~75 times
Memory bandwidth is limiting performance of future designs
Processors + DIMMs has to go

Processor microarchitecture to exploit locality
Need a new microarchitecture and execution model ("co-design")

Much lower control overhead relative to computation
Much more aggressive exploitation of locality (explicit control of data movement?)

Must not burden the programmer with this
Programming difficulty

Scale and concurrency
MPI is a low-productivity programming model (and not performace portable)
Time is right for a high productivity language

PGAS languages a good start, but prefer Chapel, X10, etc.
SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. Slide 13

Chapel
A new parallel language developed by Cray for HPCS

Themes
Raise level of abstraction, generality compared to SPMD approaches
Support prototyping of parallel codes + evolution to production-grade
Narrow gap between parallel and mainstream languages

Chapel’s Productivity Goals
Vastly improve programmability over current languages/models
Support performance that matches or beats MPI
Improve portability over current languages/models (actually better than MPI)
Improve code robustness via better abstractions and semantics

Status

Draft language specification available
Portable prototype implementation underway
Most effort to date has been focused on functionality and feature evaluation
Early releases to ~90 users at ~30 sites (academic, government, industry)
Public release planned for SC08

…
forall (_, r) in (Updates, RAStream()) do

on T(r & indexMask) do
T(r & indexMask) ^= r;

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. 14

=

+ +
=

= w0

= w1

= w2

= w3

rprj3 Stencil from NAS MG

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. 15

Fortran+MPI 3D 27-point Stencil (NAS MG rprj3)
subroutine comm3(u,n1,n2,n3,kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer n1, n2, n3, kk
double precision u(n1,n2,n3)
integer axis

if(.not. dead(kk))then
do axis = 1, 3

if(nprocs .ne. 1) then
call sync_all()
call give3(axis, +1, u, n1, n2, n3, kk)
call give3(axis, -1, u, n1, n2, n3, kk)
call sync_all()
call take3(axis, -1, u, n1, n2, n3)
call take3(axis, +1, u, n1, n2, n3)

else
call comm1p(axis, u, n1, n2, n3, kk)

endif
enddo

else
do axis = 1, 3

call sync_all()
call sync_all()

enddo
call zero3(u,n1,n2,n3)

endif
return
end

subroutine give3(axis, dir, u, n1, n2, n3, k)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2, i2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1, i2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1, 2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-1,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,2)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,n3-1)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

return
end

subroutine take3(axis, dir, u, n1, n2, n3)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer buff_id, indx

integer i3, i2, i1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif
endif

return
end

subroutine comm1p(axis, u, n1, n2, n3, kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id
integer i, kk, indx

dir = -1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1,

i2,i3)
enddo

enddo
endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-

1,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,n3-

1)
enddo

enddo
endif

dir = -1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2, i2,i3)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,

2,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,2)

enddo
enddo

endif

do i=1,nm2
buff(i,4) = buff(i,3)
buff(i,2) = buff(i,1)

enddo

dir = -1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

endif

dir = +1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif

return
end

subroutine rprj3(r,m1k,m2k,m3k,s,m1j,m2j,m3j,k)
implicit none
include 'cafnpb.h'
include 'globals.h'

integer m1k, m2k, m3k, m1j, m2j, m3j,k

double precision r(m1k,m2k,m3k), s(m1j,m2j,m3j)
integer j3, j2, j1, i3, i2, i1, d1, d2, d3, j
double precision x1(m), y1(m), x2,y2

if(m1k.eq.3)then
d1 = 2

else
d1 = 1

endif

if(m2k.eq.3)then
d2 = 2

else
d2 = 1

endif

if(m3k.eq.3)then
d3 = 2

else
d3 = 1

endif

do j3=2,m3j-1
i3 = 2*j3-d3
do j2=2,m2j-1
i2 = 2*j2-d2
do j1=2,m1j
i1 = 2*j1-d1
x1(i1-1) = r(i1-1,i2-1,i3) + r(i1-1,i2+1,i3)

> + r(i1-1,i2, i3-1) + r(i1-1,i2, i3+1)
y1(i1-1) = r(i1-1,i2-1,i3-1) + r(i1-1,i2-1,i3+1)

> + r(i1-1,i2+1,i3-1) + r(i1-1,i2+1,i3+1)
enddo
do j1=2,m1j-1
i1 = 2*j1-d1
y2 = r(i1, i2-1,i3-1) + r(i1, i2-1,i3+1)

> + r(i1, i2+1,i3-1) + r(i1, i2+1,i3+1)
x2 = r(i1, i2-1,i3) + r(i1, i2+1,i3)

> + r(i1, i2, i3-1) + r(i1, i2, i3+1)
s(j1,j2,j3) =

> 0.5D0 * r(i1,i2,i3)
> + 0.25D0 * (r(i1-1,i2,i3) + r(i1+1,i2,i3) + x2)
> + 0.125D0 * (x1(i1-1) + x1(i1+1) + y2)
> + 0.0625D0 * (y1(i1-1) + y1(i1+1))

enddo
enddo

enddo
j = k-1
call comm3(s,m1j,m2j,m3j,j)
return
end

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. 16

NAS MG rprj3 Stencil in Chapel
def rprj3(S, R) {

param Stencil = [-1..1, -1..1, -1..1],
w: [0..3] real = (0.5, 0.25, 0.125, 0.0625),
w3d = [(i,j,k) in Stencil] w((i!=0) + (j!=0) + (k!=0));

forall ijk in S.domain do
S(ijk) = + reduce [offset in Stencil]

(w3d(offset) * R(ijk + R.stride*offset));
}

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. 17

Chapel Code Size Comparison
For HPC Challenge Benchmarks

STREAM
Triad

Random
Access

FFT

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. 18

Thank You!

Questions?
SOS 13 - Cray (S. Scott) Slide 19 Copyright 2009, Cray Inc.

ORNL Petaflop System

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. Slide 20

The Cray Roadmap
Realizing Our Adaptive
Supercomputing Vision

Cray XT4

2008

Cray XMT

2009

Cray XT5
& XT5h

“Granite”

2010

Vector

Scalar

Multithreaded

2011+

“Baker”

“Marble”

“Baker”+

CX1

Cascade
Program

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. 21

Main Areas of Productivity Enhancement in
Cray’s Cascade System

Compilers
Common user environment across Marble and Granite blades
Integrated support for CAF, UPC
Incremental compilation, runtime profiling, improved user feedback
Fully automatic multi-level parallelism (shared memory, multi-threading,
vectorization)

Programming Tools
Environment setup (modules)
Comparative debugging and dual-code debugging
Automatic performance analysis

Scientific Libraries
Auto tuning (Cray Adaptive Sparse Kernels)
Adaptivity (Cray Adaptive FFT, Cray Adaptive Sparse Kernels)

Programming Languages
Support for traditional languages
Integrated support for UPC, CAF, OpenMP
Chapel

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. 22

Automatic Performance Analysis in Cascade
Basic approach:

Intelligently collect and filter data
Distinguish between “similar” and “different” application behavior
Search data for inefficient execution patterns using performance models

Automatically identify and expose performance anomalies
Load imbalance (MPI and OpenMP)
Communication / synchronization / I/O problems
Environment variables
Etc.

Support includes:
Automatic profiling analysis

Automatically detects the most time consuming functions in the application
Feeds information back to the tool for further (focused) data collection

Recommendation infrastructure in CrayPat
E.g.: MPI rank placement suggestions (how ranks are mapped to cores)
Discrete Units of Help – visual performance hints to users

Scalable performance visualizer

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. 23

Cray Adaptive Sparse Kernel
The CASK Process
1. Use a code generator to build all known variants of the

algorithm for a set of optimizations (tens of thousands)
2. Use extensive auto-tuned framework to benchmark

performance for known matrix classes
3. Use discrete optimization strategy to tune compile

switches
4. At runtime, analyze matrix to match to known category
5. Use offline knowledge to assign a tuned kernel

CASK will sit silently beneath PETSc and Trilinos

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. 24

CRAFFT Library
CRAFFT is designed with simple-to-use interfaces

Planning and execution stage can be combined into one subroutine
call
Underneath the interfaces, CRAFFT calls the appropriate FFT kernel

CRAFFT provides both offline and online tuning
Offline tuning

Which FFT kernel to use
Pre-computed PLANs for common-sized FFT

No expensive plan stages
Online tuning is performed as necessary at runtime as well

At runtime, CRAFFT adaptively selects the best FFT kernel
to use based on both offline and online testing (e.g. ACML,
FFTW, Spiral, Custom FFT)

SOS 13 - Cray (S. Scott) Copyright 2009, Cray Inc. 25

