Modeling and Simulation of Many Core Architectures

Sudhakar Yalamanchili

Center for Experimental Research in Computer Systems
School of Electrical and Computer Engineering
Georgia Institute of Technology
Motivation

"If you can not measure it, you can not improve it."

Lord Kelvin

"Nothing can be more fatal to progress than a too confident reliance on mathematical symbols; for the student is only too apt to take the easier course, and consider the formula not the fact as the physical reality."

Lord Kelvin
Many Core Simulation Group@GT

Faculty
- Tom Conte (SCS)
- S. Mukhopadhyay (ECE)
- George Riley (ECE)
- S. Yalamanchili (ECE)

Graduate Students
- Paul Bryan
- Gregory Diamos
- Brian Hayes
- Chad Kersey
- Minki Lee
- Elizabeth Lynch
- Nikil Sathe

Joint Effort between CERCS and new Center for Manycore Computing
The State of the Practice

- System complexity is outpacing simulation capacity
 - Cannot perform analysis at scale

- Islands of simulators and simulation systems
 - Customized interactions
 - Little leverage of individual investments

- The problem will get worse faster

Simulation Wall!
Prioritized Major Challenges*

1. **Cost of building a validated useful simulator**
 - Composable
 - New methodologies for building simulators

2. **Accuracy**
 - Need for calibrated models
 - Methodologies for constructing calibrated models

3. **Performance**
 - Parallelism, multiscale, and hardware acceleration

4. **Power and thermal models**

5. **Ease of use: Productivity and Management Tools**
 - Visualization, deployment, debugging, etc.
 - Documentation & deployability

*From Outbrief: *Performance Prediction and Simulation for Exascale Interconnection Networks*, Interconnect Workshop, DoE Institute for Advanced Architectures, July 2008
Some things to Keep in Mind

- Research
 - Requirements are changing, unknown, or speculative
 - Modeling what does not exist at the Exascale
 - Confidence levels

- Education
 - Lack of discipline-oriented courses
 - Need more rigor in education for architecture/system modeling and simulation
 - Knowledge of the third kind
Key Challenges

- Managing complexity (items 3 and 5)
 - Parallelism, sampling, acceleration

- Multi-model simulations (items 2 and 4)
 - Power and thermal challenges
 - Feedback between thermal and discrete event simulation

- Productivity (items 1 and 5)
 - Cost of simulator construction
 - Ease of use
Spectrum of Solutions

- **Simple Premise:** Use parallel machines to simulate/emulate parallel machines
- **Leverage mature point tools via standardized API for common services**
 - Event management, time management, synchronization
- **Cull the design space prior to committing to hardware prototyping or hardware acceleration strategies**
Managing Complexity

- Coupling timing models and functional models
- Timing models can be 4-5 orders of magnitude slower than real time
Solution Techniques

- Statistical Techniques

- Parallel Simulation

- Acceleration
 - FPGAs and more recently GPUs

- Regression and analytic models for design space exploration
 - For example, work of Lee & Brooks @ Harvard
Cluster Sampling for Processor Simulation

- **Hot:** simulator state is known
 - Measurements are accurate

- **Warm:** transition between cold to warm
 - Used to get the simulator to a known state

- **Cold:** simulator state is unknown
 - Measurements would not be accurate

Challenge: Extensions to multithreaded/parallel codes

Courtesy: Paul Bryan & Tom Conte
Coarse Grain Parallel Simulation

Example Modeled System

- Logical process
- Event messages
- System state
- Event, time, synch services

Key Challenges
1. Exploit program semantics
2. Exploit architecture behaviors

3. Parallel SST, SNL
Some Simple Goals

- Get to 2-3 orders of magnitude slower than real time for timing simulations
 - Use Petaflop machines to simulate Exascale Machines?

- Consider hardware support for global virtual time
 - Lynch & Riley (ongoing work)
 - Support in the NICs?
 - Hardware barrier synchronization support from the 90’s
 - Hardware, fine-grained all-to-all support
Manifold: Overview

Core, **memory** and network models

Timing Model 3

Sampling Timing Interface

I/O Devices

Workload Stimulus (QEMU | Traces | Stochastic)

NI

Interconnection Network (CAPSTONE)

Parallel Simulation Core

I/O Devices

Workload Stimulus (QEMU | Traces | Stochastic)

NI

Shared I/O Devices

Functional Simulation

I/O models

Timing, Event & Synchronization services

Sponsor: Sandia National Laboratories
What Can Be Done?

- Provide an infrastructure to integrate mature point tools
 - Standardized API for time, event, synchronization, and management services
 - Support both time stepped and discrete event simulation
 - Central role for rigorous statistical methods
 - Near Term integration of QEMU with HP Labs COTS

- Scale-up: Track Moore’s Law for Simulation Capacity?
 - Double simulation capacity every 12-18 months
 - High level composition of detailed models: on-chip and off-chip
 - Enable migration of models across hardware and software simulation platforms
Major Challenges

- Managing complexity (items 3 and 5)
 - Parallelism, sampling, acceleration

- Multi-model simulations (items 2 and 4)
 - Power and thermal challenges
 - Feedback between thermal and discrete event simulation

- Productivity (items 1 and 5)
 - Cost of simulator construction
 - Ease of use
Power and Thermal Modeling

- Seek a fundamental understanding of energy and thermal challenges at Exascale

- Develop, model, and assess (new) architectural principles for energy management
 - Architectural techniques for energy management
 - Need to couple physics of heat management with detailed architecture simulation
Thermal and Power Scaling Limits

Temperature Limited Performance

Power Limited Performance

- Hot Spot (UVa)
- IntSim (J. Meindl’s group@GT)
Feasibility vs. Capacity Gap

Mukhopadhyay and Yalamanchili

The objective of the proposed research is to reduce this gap between available and achievable RoS.
Scaling Principles

- **Dynamic core scaling**
 - Analog of traditional voltage-frequency scaling

- **Spatial scaling**
 - Metrics for thermal proximity and thermal compactness for heat management
 - Exploit the physics!

- **What do you manage **architecturally?**
 - Gradients vs. peak temperature
Effects of Spatiotemporal Scaling

Randomized migration

Impact of spatial scaling

~20°C difference in maximum temperature

Fixed set of 256 cores
Randomization after 10K cycles
Randomization after 100K cycles

Impact of spatial scaling
Random Pattern of On-Tiles

- 64 on-tiles
- 256 total tiles
- 100K cycles interval @ 3GHz

Spatial gradient:
10.5° @ 0.75mm

Temporal gradient:
2.5° @ 100K cycles

Cyclic Pattern of On-Tiles

Spatial gradient:
2.5° @ 0.75mm

Temporal gradient:
1.99° @ 100K cycles

Courtesy: Nikil Sathe
The Need for Feedback

Thermal profile

Spatiotemporal migration

Power distribution network

Co-exploration of thermal management/architecture management

Co-design power distribution/architecture management
Major Challenges

- **Managing complexity (items 3 and 5)**
 - Parallelism, sampling, acceleration

- **Multi-model simulations (items 2 and 4)**
 - Power and thermal challenges
 - Feedback between thermal and discrete even simulation

- **Productivity (items 1 and 5)**
 - Cost of simulator construction
 - Ease of use
A Thought: Learn from Design Flows

Digital
- System Level Design
 - Function Simulation
- Behavioral Level Simulation
 - Function Check
 - Timing Check
- Gate Level Simulation
 - Function Check
 - Timing Check
 - Power Analysis
- Synthesis
- VHDL
- Design Flow
- CADENCE

Analog
- Circuit Level Design
 - Function Simulation
- Layout
 - DRC Check
 - LVS Check
- SPICE Simulation
 - Function Check
 - Timing Check
 - Power Analysis
- Postpass Optimization
- CADENCE

Lexical Analyzer
 - tokens
Parser
 - parse tree
Semantic Analyzer
 - parse tree
Intermediate Code Generator
 - IR
Optimizer
 - IR
Code Generator
 - low level IR
Postpass Optimizer
 - machine code
Implications

- Need a hierarchy of representations
 - Accompanied by successive refinement

- Some example simulation flow steps
 - Parsing a system description language
 - Component partitioning & assignment,
 - Design rule (model) check

- Need Structure
 - Who is the customer for these tools?
Example Y-Chart Based Design (Gajski, Kuhn)

- Behavioral
 - System Specification
 - Algorithm
 - Functional
 - Boolean Equation
 - Abstraction

- Synthesis
 - Extraction
 - Refinement
 - Optimization

- Structural
 - Processor-memory interconnect
 - Functional units
 - Register transfer level
 - Gates
 - Transistors

- Physical
 - Standard cell
 - Macro
 - Block/chip
 - Chip/board

Synthesis
Analysis
Generation
Example Y-Chart Based Design for Simulation

- **Architecture**
 - Functional
 - Transaction
 - Traces

- **Refinement**
 - Mapping

- **Abstraction**
 - Cycle level

- **Analysis**
 - binaries
 - area
 - power
 - thermal
 - Size/weight/power

- **Application**
 - Algorithm (symbolic models, message traces, etc.)
 - Functional (emulation)
What Can Be Done?

- Create a simulation flow for the construction of models
 - Spiral or waterfall model of construction
 - Use architecture/system description languages

- Are we doomed to build what we can predict?

- Reporting Methodology
 - Challenging!
 - Publication of individual software and a centralized managed code base to support reproducibility
An Ecosystem for Many Core Simulation

Serial simulation

Accelerated (e.g., FPGA) simulation

Parallel simulation: Manifold

Parallel Accelerated (e.g., FPGA) simulation

Prototyping

Standardized simulation API and productivity tools for easier migration of models across hardware/software simulator platforms

Easier scale-up path with common API

From DoE IAA White Paper (SNL, ORNL, GTech, UMD, UT)
Summary

Thank You

Coupling/Feedback Across Modeling Tools

Complexity Management

Productivity Tools