. DEPARTMENT OF Ofﬂce Of

NERGY Science

The Exascale Imperative
Quantifying the Cost of Exascale

William Harrod
Director — Research Division
Advanced Scientific Computing Research

March 15, 2012

The Exascale Imperative
Quantifying the Cost of Exascale

Bob Lucas
Information Sciences Institute
University of Southern California

March 13, 2012

Motivation

 Today we have a bulk synchronous, distributed memory,
communicating sequential processes (CSP) based execution model

— We've evolved into it over two decades
— It will require a lot of work to carry it forward to exascale

— The characteristics of today’s execution model are mis-aligned with
emerging hardware trends of the coming decade

e We need to examine alternative execution models for exascale
— Alternatives exist, and they look promising (e.g. async EMs)

— We can use modeling and simulation to evaluate the alternatives using
DOE applications

— This can guide our hardware/software trade-offs in the codesign
process, and expands options for creating more effective machines

SOS16 3

Qverview

Why rethink execution models?

Current analysis shows problems, and it’s going to get worse
Alternatives to today’s execution model

Quantitative analysis of alternative execution models
Preliminary results

Summary

There are many possible realizations of the machine architecture

*Cores (many simple cores)
*Flat clock rate
*Multithreaded (n-threads)
*SIMD (n-slots)

*Fat+Thin cores (ratio)

*NoC
*Constrained Topology (2D)

*Cache Hierarchy (size, type, assoc)
*Automatic caches
*Scratchpad/software managed
*NVRAM
*Alternative coherency methods

*Non-uniform memory access (NUMA)
between cores and memory channels
*Topology may be important
*Or perhaps just distance
*Memory
*Increased NUMA domains
*Intelligence in memory (or not)
*Fault Model for node
*FIT rates, kinds of faults,
granularity of faults/recovery

*|[nterconnect
*Constrained Topology (Torus,
Tapered Dragonfly)
*Bandwidth/latency/overhead for
communication

*Primitives for data movement/sync
*Global Address Space or messages
only
*Memory fences
*Transactions / remote atomics

There Are Also Many Programming Abstractions

Examples of parallel execution models

Event-Driven SPMD Dynamic Threads

barrier
—

barrier
ZO=

—

barrier

* What is the parallelism model?

— Must balance productivity and implementation efficiency
* Is the number of processors exposed in the model

— HPCS Language thrust: can we virtualize the processors?
 How much can be hidden by compilers, libraries, tools?

Scientists Make Choices

What is the best model to map computation onto underlying parallel hardware?

Numerical Model

Numerical
Method

Algorithm

... Particle Methods i

[~ Block Structured - |

Finite Element

Execution Models

op [[11]

]
¢ Compiler/

Dynamic

Event-Driven

Runtime Env.

7

7’¢r7 ;
< ol

,@?}S

Hardware Architecture

@V

f\"’dw

@é;v

.'f "““ .@
N\
~
PR

N
=7

Today’s Mainstream Execution Model

Systems integrated from COTS microprocessors and memories
— Maximizes performance potential for a given cost
— Distributed memory systems
— Multicore nodes have reintroduced shared memory (e.g., OpenMP)
— SIMD extensions (e.g., SSE)
— Accelerators (e.g., GPUs in Titan)
Communicating Sequential Processes using MPI
— User explicitly manages data distribution and communication
— Typically bulk synchronous programming
— Trades human labor for simpler systems
Mature programming languages
— PERI found that 70% of new SciDAC-2 scientific code is in Fortran
Weak scaling
— DRAM volume increases with CPU numbers and speed

VLSI Trends Threaten Today’s Execution Model

Parallelism: Assume modest growth in parallelism
— But parallelism is now growing exponentially

Locality: Assume flat/uniform communication costs
— But costs are increasingly hierarchical

Computational Complexity: Assumes FLOP is metric to conserve
— But cost of data movement exceeding cost of FLOPS

Byte/FLOP ratios: Assumes same ratios for memory capacity and
bandwidth will remain

— But cost per bit of DRAM and Bit/second of bandwidth is increasing relative
to cost of computation

Heterogeneity: Assumes uniform execution rates across system

— But source of execution rate heterogeneity (noise) are increasing drastically
Reliability: Assumes reliable hardware (or reliable enough)

— But transient error rates increasing
Regularity: Assumes non-adaptive/regular algorithms

— But adaptive/irregular algorithms are the biggest growth opportunity for
improved computational efficiency and new problems

We Need to Know Our Options

 DOE has embarked on a series of studies to better understand it options

— Examine a carefully chosen set of today’s applications (starting with GTC) that
together span some of the scientific domains and computational motifs that will

be important for Exascale
— Develop models of how these applications should ideally execute

— Compare and contrast these with measurements of the execution of these same
applications when realized in today’s execution model, on today’s hardware.

— Use modeling and simulation to understand how they could act given alternative
execution models.

* We need answers in time impact exascale design decisions
* This is consistent with DOE’s Co-Design methodology

10

Evaluating Deficiencies of Today’'s Model

Key questions that need to be answered
— What underlying machine features are today’s applications not effectively utilizing?
— What are the power & performance consequence of ignoring these?
— Or conversely, what is performance/power-efficiency opportunity for a new
execution model?
Approach: Quantify sources of performance loss in current execution models

— Examine a carefully chosen set of today’s applications (starting with GTC) that
together span some of the scientific domains and computational motifs that will
be important for Exascale

— Develop models of how these applications would ideally execute
— Compare and contrast these with measurements of the execution of these same
algorithms when realized in today’s CSP execution model, on today’s hardware.
More than intuition, the goal is a rigorous, quantified understanding of the
overheads and inefficiencies introduced by the CSP execution model

11

Standing on the Shoulders of Giants

@ Floating Point Address
@ Integer @ Integer Address
@ Branch @ Branch
@® Memory QO Int Data
@ Floating Point
Integer

Instruction Instruction

Mix Usage

Real Physics Applications Primarily Do SLOW Memory References

Courtesy of Rich Murphy, Sandia National Laboratory

12

Starting with the Gyrokinetic Toroidal Code

GTC uses PIC method to simulate plasma .
microturbulence for fusion devices
Written in F90 with MPI .

Scalable to thousands of processors

Charge Deposition Step (SCATTER operation)

GTC
Dl :
NN
Classic PIC 4-Point Average GK
(W.W. Lee)

Grid memory accesses depend on the order in
which particles are processed.

In a multithreaded implementation with a shared
grid, multiple threads update grid locations in
parallel.

The case of random particle positions and parallel
updates is similar to the GUPS benchmark.
However, implementations usually exploit the fact
that PIC is a physical many-body simulation
method.

“Push”
F.2> v, 2 x
“Scatter”
”Gath;r" Weight particles
(E,B),2>F At to field
(Xi ,vi) 9 (pl'l)j
“Solve”

(p.)),> (E.B),

Important Routines in GTC

Poisson — charge distribution =2 Electric field
Charge — deposits charge on Grid
Smooth — smoothes charge on grid

Setup

2

Load
N7

Pusher — Moves the lons/Electrons Charge

Field — Calculates Forces due to Electric field

7

Shifter — Exchanges between MPI tasks Poisson

2%0%
4%

M pusher
B shift
¥ charge

B poisson

" field

B smooth Charge

load Poisson

7
Field
7

Push €

2
Shift
2

2

N7
Field —

Dynamic Computation and CSP => Load Imbalance

MPI_Sendrecy
MPI_Allreduce
MPI_Gather
MPI_Reduce
MPI_Bcast
MPI_Allgather
MPI_Comm_size
MPI_Comm_rank

Wasted Time

200

[N
o
<

e

. Time wasted due to
dynamic computation

— Different numbers

of particles move at
each time step

— Initial conditions —
static partitioning of
grid induces load
imbalance in particle
distribution

100

tine in seconds

50

. Typical load imbalance
performance loss can be
between 10-30% of the
runtime, depending on
concurrency and
problem definition

< < < < < <
- [aV] (o) A3 'y}

60
70
80
90

sorted index

Load imbalances are natural consequence of static scheduling
Introspective dynamic scheduling solves problem implicitly

Consequences of Ignoring Data Locality

Relative Runtime

1.6

1.4

1.2

1.0

0.2

0.0

Cost of moving data

exceeds cost of

computation

models do not allow

data locality

when crossing NUMA

express data locality)

1 ‘ 2 3 6 12

Can fix with more
1536 768 512 256 128

OpenMP threads / MPI tasks i
(verbose) or consider

alternative models

But current programming
programmer to express
Example: OpenMP sees
40 % performance penalty

boundary (no aibility to

extensions to OpenMP

16

Individual Processor Performance

At first glance, pushe/pushi appear well served.

do m=1,mi

100 Source F90

e3=0.0

kk=kzion(m)

wzl=wzion(m)

wz0=1.0-wzl

do larmor=1,
ij=jtion0(larmor,m)
wp0=1.0-wpion(larmor,m)
wt00=1.0-wtionO(larmor,m)
el=el+wp0*wt00*(wz0*evector(1,kk,ij)+wz1*evector(1,kk+1,ij))
e2=e2+wp0*wt00*(wz0*evector(2,kk,ij)+wzl*evector(2,kk+1,ij))
e3=e3+wp0*wt00*(wz0*evector(3,kk,ij)+wz1*evector(3,kk+1,ij))
ij=ij+1
wt10=1.0-wt00
el=el+wp0*wt10*(wz0*evector(1,kk,ij)+wz1*evector(1,kk+1,ij))
e2=e2+wp0*wt10*(wz0*evector(2,kk,ij)+wz1*evector(2,kk+1,ij))
e3=e3+wp0*wt10*(wz0*evector(3,kk,ij)+wz1*evector(3,kk+1,ij))
ij=jtion1(larmor,m)
wp1=1.0-wp0
wt01=1.0-wtion1(larmor,m)
el=el+wpl*wt01*(wz0*evector(1,kk,ij)+wz1*evector(1,kk+1,ij))
e2=e2+wpl*wt01*(wz0*evector(2,kk,ij)+wz1*evector(2,kk+1,ij))
e3=e3+wpl*wt01*(wz0*evector(3,kk,ij)+wz1*evector(3,kk+1,ij))
ij=ij+1
wt11=1.0-wt01
el=el+wpl*wtl1*(wz0*evector(1,kk,ij)+wzl*evector(1,kk+1,ij))
e2=e2+wpl*wtl1*(wz0*evector(2,kk,ij)+wz1*evector(2,kk+1,ij))
e3=e3+wpl*wtl1*(wz0*evector(3,kk,ij)+wz1*evector(3,kk+1,ij))

enddo

wpi(1,m)=0.25%el
wpi(2,m)=0.25%e2
wpi(3,m)=0.25%e3
enddo

evector(1:3.0.1]) Ll |
€ 1
1l R 77 A
r s 6 ’ /
- 5 .
- e - 4O0KB
s . 3KB
£ " 176KB
re
e
£ & 160KE
3000 ryw _,.1' & ¢
—_ jay i J
* | A }; G’
o L% : Working Set
- ‘v
E ;‘ k> ~
< r s 1
2 e &
£ s
r py
J 4
4000 7’" 4
-
4 - ./
' ’/’
2000 & N 64KE
v 12KB
g S0KE
Working Set L6KE
2
0 Jam 200 o oo om0 o oo 3000 o S0

access number

Misleading Metrics:
— Good Cache Behavior (=100% L1 hit rate)
— 1.1 instr/cycle (avg)
still...
— IPC could be much higher!
(Pentiums theoretically retire 8 ops per cycle)

They Really Aren’t

do m=1,mi

€1=0.0

ource F

e3=0.0

kk=kzion(m)

wzl=wzion(m)

wz0=1.0-wzl

do larmor=1,4

ij=jtion0(larmor,m)
wp0=1.0-wpion(larmor,m)
wt00=1.0-wtionO(larmor,m)
el=el+wp0*wt00*(wz0*evector(1,kk,ij)+wzl*evector(1,kk+1,ij))
e2=e2+wp0*wt00*(wz0*evector(2,kk,ij)+wz1*evector(2,kk+1,ij))
e3=e3+wp0*wt00*(wz0*evector(3,kk,ij)+wz1*evector(3,kk+1,ij))

ij=ij+1
wt10=1.0-wt00
el=el+wp0*wt10*(wz0*evector(1,kk,ij)+wz1*evector(1,kk+1,ij))
e2=e2+wp0*wt10*(wz0*evector(2,kk,ij)+wzl*evector(2,kk+1,ij))
e3=e3+wp0*wt10*(wz0*evector(3,kk,ij)+wzl*evector(3,kk+1,ij))

ij=jtion1(larmor,m)
wp1l=1.0-wp0
wt01=1.0-wtion1(larmor,m)
el=el+wpl*wt01*(wz0*evector(1,kk,ij)+wzl*evector(1,kk+1,ij))
e2=e2+wpl*wt01*(wz0*evector(2,kk,ij)+wz1*evector(2,kk+1,ij))
e3=e3+wpl*wt01*(wz0*evector(3,kk,ij)+wzl*evector(3,kk+1,ij))

ij=ij+1
wt11=1.0-wt01
el=el+wpl*wtll1*(wzO*evector(1,kk,ij)+wzl*evector(1,kk+1,ij))
e2=e2+wpl*wt11*(wz0*evector(2,kk,ij)+wzl*evector(2,kk+1,ij))
e3=e3+wpl*wtll1*(wz0*evector(3,kk,ij)+wzl*evector(3,kk+1,ij))

enddo

wpi(1,m)=0.25*el

wpi(2,m)=0.25%e2

wpi(3,m)=0.25%e3

enddo

User Expected — “Mental Model”
Per iteration of loop:
FP MULTSs: 195
FP ADD/SUBs: 121

There is a Semantic Gap

Compiler Representation — “Programming Model”

Array Accesses: 34 \

Compiler

movl
imulq
imulq
movq
movaps
movaps
subss
movq
addq
addq
mulss
movaps
movslg
movaps
subss
mulss

DFG

Per iteration of loop:
FP MULTs: 195

FP ADD/SUBs: 121
Array Accesses: 96

5x

x86 Binary

%r8d, 248(%rsp)

%rbx, %r14

%rbx, %rbp

%rll, %ri2

%xmm9, %xmm4
%xmm7, %xmm1l
(%r15,%rax), %xmm?2
264(%rsp), %r15

%r14, %ril

%rbp, %r12
(%r13,%r12,4), %xmmé
%xmm7, %xmm1
%r8d, %r8

%xmm7, %xmm6
(%r15,%rax), %xmm3
(%r13,%r11,4), %xmm1
(%r9,%rax), %r15d

In the Wild (PGF compiler)

Per iteration of loop:
FP MULTs+ADD/SUB: 284
Data Accesses: 183

/

—

—_—

Gap exacerbated by x86 ISA

It Can Get Worse

Routine shifte/shifti working set exceeds cache

80 MBytes / lter

« Code:
“Repacks’ particles so that other sections of code
are “easier”

* Metrics:

— 0.23 Instr/Cycle (avg)

— Bad cache behavior (293.7% L1 hit rate)
— Many copy instructions

— 15 data move instructions per particle

Bottom Line

* Today’s CSP execution model
— Data structure addressing overhead

10000
— Memory hierarchy not well leveraged

— Exposes burden of communicationand

computation management to users @
]
% 100 4
* In practice £ \ /_/ ~~now
— Developers shuffle data around... 10 \ w018 .
— Try to “optimize” computation and \\:7'_{

communication.
— Compiler inserts “busy” work... N & & Q\"%v &

Instruction issue and main memory access
take disproportionate amount of energy

There are alternative execution models

 We have evolved to a hybrid, bulk-synchronous, CSP model

It works well for some (e.g., Malcomb Stocks)
Not so well for others

The characteristics of the current execution model are mis-
aligned with emerging hardware trends for the coming decade

We need to examine alternative models for exascale

Alternatives exist, and they look promising (e.g. async EMs)

We can use modeling and simulation to evaluate the alternatives
using DOE applications

This can guide our hardware/software trade-offs in the codesign
process, and expands options for creating more effective
machines

We need to do this now, while there is still time to impact
exascale systems and their applications

21

The Potential of Manytasking

22

Manytasking (from a programmer’s perspective):

Easy mechanism to spawn parallel, asynchronous chunk of
work, maybe recursively.

Tasks execute as independent threads.

Tasks encapsulate efficient core-level execution capabilities,
e.g., vectorization.

Permits compilers to optimized encapsulated code.

Programmer expectations:

Performance is proportional to the number of active tasks | can
issue (up to the active constraints of the HW, e.g., bandwidth).

| need to keep task granularity large enough to make each task
efficient.

| can hide remote latencies by having lots of tasks “in flight”.

Serial Sparse MV

Manytasking Optimization

int sparsemv(SparseMatrix & A,

#pragma omp parallel for

DenseVector & x, DenseVector {
nrows = A.getNrows() ;

for (int i=0; i< nrows; 1i++) {
double sum = 0.0;
double * curVals = A.getRowVals (i) ;
int * curInds = A.getRowInds (i) ;
int curNumEntries= A.getNumRowEntries (i) ;
for (int j=0; j< curNumEntries; Jj++)
sum += curVals[]j]*x[curInds[]j]];
y[1i] = sum;
}

return (0) ;

Contrast: SPMD-Optimized Version

24

HaloExchange:
- Perform halo exchange.
- 119 lines C++ cod

7

7
//6HEADER

#ifdef USING MPI // Compile this routine only if running in parallel

#include <iostream>
using std:icerr;

using std::endl;

#include <cstdlib>

#include <cstdio>

#include "exchange_externals.hpp”
#undef DEBUG

void exchange_externals(HPC_Sparse Matrix * A, const double *x)

int 1,
int num external = 0;

// Extract Matrix pieces

int local nrow = A->local nrow;
= A->num_send_neighbors;

e_sent s
int * elements_to_send = A->elements_to_send;

int size, rank; // Number of MPT processes,
MPI_Comn_size(MPI_COMM_WORLD, &5ize
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/

/1 first post receives, these are immediate receives
/7 Do not wait for result to come, will do that at the

/1 wait call below.
’

int MPI_MY_TAG = 99;

MPI_Request * request = new MPT_Request[num_neighbors];

/
// Externals are at end of locals
/

double *x_external = (double *) x + local nrow

/1 vost receives fi
for (1= 0y 1 < mem meighbors; ir+)
i
= recv_length[i];

NPT_TEecy (x_external, n recy, MPI_DOUBLE, nelghbors(i], MPI_MY TAG

MPI_COMM_WORLD, request+i);

1_to_be_sent; i++) send buffer[i] = x[elements_to_send[i]]

neighbor

L]

send_length(i];

d_butfer, n_send, MPI_DOUBLE, neighbors(i], MPI_MY_TAG
HPI_COMM_WORLD) ;

+= n_send;

// Complete the reads issued above
7"

MPI_Status status;

sronmaven for (i = 0; i < num_neighbors; [i++) nesaring it 1w o a2 exmesnat by o T T
e e e ke B S e roduont e, esfatus) E 2)) T B
o e o ol s v 1o GOFE, S5 NPT WALt SErOR\nTS@IMA 1. s sprs e e o e e 0T e) o) < e s coron grocessee(i1) ¢
St B R IRl et i ont for (191 1 < sun_exorn
puiloedy “he"refe Sofeuare voumkeions either vereios 2.1 of the etee e tosvum ¢ ” B .
iz gicfeiees 1o ‘&E\lﬁ‘l ol d FEARCSEL,, b sdding 1 and negatiag it 1 e e el b « m"[i o sssaning extamnel fndices hase < <t “
o Ty ity e L — obr_so_tnde_in w1109 - - y 2 - 1o i o seigers):

I e , y 0 e) 17 e v secetvn, shese ro ssmatase

R axtarnal squations = © << i
#izast usmic wer /¢ clapile this routina only if rumning in parailel [e T e o Toquartii);
e nep ¢ s 4 mp naigibors(i] = 0 == No external clamants are updated by
int + Gmp_buffar = naw intlsize); // Temp buffer space nesded below "
3, B o ghoman tndex orcaes = e instrisel;

it e o beseer aigorienn for doing nis, bt ehis T

HaloExchangeSetup
- Determine neighbors and halo
A —— sizes.

i if? - Set up buffers for rapid halo
» exchanges.
. - 598 lines C++ code

)

== | - - Very complicated logic and MPI

‘ programming.

Manytasking Summary

25

— Manytasking could greatly simplify scalable application
development for traditional application areas:

« Simple oversubscribing of cores with lots of tasks.
« Optimal execution: Saturated memory bandwidth.
* Much better load balancing potential.

— Concern:
Niagara is no longer around.
Cray XMT similar, but struggling?
— Nagging concern:

We can write apps this way but...
Can we construct cost-effective system to support this model?

Aspects of Alternative Exascale Execution Models

Motivated by dynamic directed graphs

STEM
* Adaptive Mesh Refinement

Knowledge management and understanding
* Semantic nets

Split-phase transactions

Avoids blocking
* Tera MTA

Message-driven computation

Move work to data
e MIT J-Machine
* Berkeley Active Messages

Constraint-based synchronization

Declarative criteria for work

* MIT Data-flow functional execution
Event driven

* Simulators (HLA/RTI)

Data-directed execution

Merger of flow control and data structure
* Neural nets

Shared name space

Direct access to globally distributed data
* UPContheT3E

26

These Address Performance Degradation

Starvation

— Expose intrinsic parallelism in meta-data of
dynamic graphs

— Employ dynamic DAG representation (dataflow)
for finer grained parallelism and asynchrony
management

— Lightweight context swapping for blocked/
suspended threads

— Reduced granularity through reduction of
overhead

— Dynamic data distribution for load balancing

Latency

— Message-driven computation reduces # of
messages

* Move work to data when appropriate, not always data
to work

* Oneformis split-phase transactions: do work on local
data then move task to next block of data on remote
compute element

— Locality management through affinity and
hierarchical organization

— Overlap communication with computation
* Lightweight thread context switching
— Migrate continuations to move control state
across system

— Asynchrony management by Local Control
Object synchronization

Overhead

Lightweight user-thread context switching

Lightweight synchronization objects with rich
semantics
* Elimination of global barriers

Waiting for contention resolution

Dynamic adaptive resource allocation for
redirection

* Adaptive network routing for parcels

* Anonymous treatment of thread execution units

* Dynamic allocation of additional execution/
memory resources

Meta-threads for lazy evaluation and
reduced explicit workload

27

How Does One Evaluate Those Alternatives?

e We want to understand the value of the execution model and
not its particular implementation

 And we need to project this to architectures that do not yet
exist

 And want to explore potential architectural features that

might benefit a new model (current features target existing
model)

28

Modeling and Simulation as a Co-design Tool

Ultimate Question:

— Do my applications run well on the 4 Application
machine?
Intermediate Questions:
— Is the application programmed in the Hardware
best way? Design

— Is there a good mapping of hardware
support for software?

------------ Evaluation -------------
Constitutive Models — can be

\
\

Ll 4 I |—
powerful, but hard to investigate , o 10’ :
new concepts and complex 5 108[Coarse-Grain
interactions S 105t Simulation
o
Coarse-Grained Simulation — g 10%F
o

- o 3
accurate, predicts trends, can scale 3 10°| - itutive

. c 2
Cycle-Accurate Simulation — highly = 101 Models Cycle-Accurate .
accurate, but can only scale so far z ° Simulation Emulation
. i 5 100
Emulation — essentially exact and l l . . . S
fast, but expensive Crude Rough Causeand Very good Exact
guess idea effect estimates hardware model

29

Execution Models in the Design Loop.

Programming Environment

Defiiition
Benchmarking Modeling
Simulate Codes on Future/
} ‘ Modeling Target Architectures

Simulation

Validated Parametric Evaluate Hardware Design
To Identify Bottlenecks EM Model Space Alternatives

5
< ‘

Predictions: Performance / Power of Applications and
Execution Model in Target Hardware Environment

.

Refine Execution Environment

¥

\®
oQ
m—‘
<
>

T e———l

Refine Application/Algorithm formulation
Refine Hardware Design

30

Multi-resolution Modeling of Execution Models

R Full System View
Locality [L On-node vs Off-node \
Concurrency | C MPI Ranks Macro Level costs dominant
Memory | M Whole node L/S vs RMA Modeling
Synchronization | S Inter-node barriers I
Most Relevant HW Interconnect, Nodes
E Most Relevant SW Communication Stack
S Node View
L NUMA domains, (possible) non-coherent domains \
Modeling is mult C Process, Threads Node Level costs dominant
& S M L/S with NUMA effects, DMA (for non-coherent domains) Modeling & simulation
scale, combination S Atomic Memory operations l
between first Most Relevant HW Sockets & Interconnect fabric
. Most Relevant SW OS, Threading Runtime
principles, simulation 0 Socket View
results, and L
’ NUMA-Domain View
measurements when u
practical T Core View
L Registers, related memory hierarchies, near vs remote NUMA domains\
¢ 1P SMT’ Ve.ctor SIMD_ Micro level Costs Dominant
M L/S with detailed latencies Simulation
§ HWa interlocks, flush and invalidate instructions

Most Relevant HW Cores, caches

| Most Relevant SW Compiler

31

Multi-Resolution Modeling of Execution Models

Synchronization,
Concurrency, Locality,
A and Memory Attributes
B
S
T
R
A Execution Model
C Compositions
T
I
@)
N '
C,={C, C, C,, ..} C\={Cy Cpy Cyy ..} coe C={C, C, C,, ...}
Full System Level Node Level Core Level
Parameter Space Parameter Space Parameter Space

RESOLUTION
32

GTC Performance Model (CSP)

Iteration Time (s)

100% T+ =

.7&‘%.___’_._._‘ "SIEEESEESSSES:
[

“15()

80% A
Lf4()

70% - uf3()

“12()

Percent Iteration Time

60% -

“f1)

=&—Modeled
— & Seq. Comp.
== Measured 50% -
C 2 % R e D 6, s P S, o
1 10 100 1000 10000 A © 097 07‘9
Node Count Node Count
(a) Modeled vs. Measured Performance (b) Runtime Breakdown by Function

First model of an application based on EM knobs

Modeled vs. Measured performance shows high model accuracy
— Maximum Error < 5%

Runtime breakdown observations:

— Performance is sensitive to load/store performance — Actually TLB miss rate,
which varies with the npartdom parameter of the input deck

— Synchronization accounts for < 5% of overall runtime

Could now modify various EM parameters and analyze the impact
predictively

GTC with static MPI vs. dynamically scheduled HPX

* Preliminary experiments show
asynchronous scheduling (HPX) changes
the communication pattern vs. MP| wwses)

* Asynchronous communication (HPX) uses
many more, much smaller messages, but
less aggregate network bandwidth

1E+09 ' ——MPI

100000000 | | | | | | | | —HPX
10000000 - N
1000000 - \ i \ \ \ 8

100000 I

| ——

=y
—

10000

-
P I
[

Network Bandwidth (B/s)

1000

—

11
21

31

41

— 51
3 61
o7
L 81
91
101
111
121
131
141
151
161
171
181
191

MPI

HPX

70

7.8e+08

5.2e+08

2.6e+08

1.3e+07

9.6e+06

6.4e+06

3.2e+06

SOS Workshop ‘12 34

Accelerating HPX

HPX leverages a massive threading model MPI
to hide latency

— Threads can be dynamically created and
transmitted across localities

— Hard limit of one thread per core

High frequency and widely distributed
communication (compared to MPI)
— Central to HPX goal of moving the work to
the data rather than the reverse
— Communication consists mostly of small
packets

» Keeps total bandwidth requirements
reasonable

What hardware constructs can accelerate
the thread creation and transfer in HPX?

HPX

SOS Workshop ‘12 35

Accelerating HPX — Thread Management

Option 1: Double Buffering

— Load a future thread’s context (in Locality —
the background) while the active Process 1 |2 i3
thread is executing AGAS @ LCo's

— Software controlled memory T——
attached to processor can hold ﬁ -

Local
components

local thread context P
. Parcelport
Optlon Z: Hardware Threads Parcelhandler w Thread Manager

— Build cores with multiple |
hardware threads that

dynamically context switch Co-Design Opportunities:
depending on resources — Size of local store required for
— HPX “one thread per-core” model complete thread context?
preserved o — DMA engine attached to memory
— Allows greater latency hiding as can support rich thread transfer
more threads will be ready to commands to reduce burden on

execute processor

36

Summary

* We are beginning to collect the data needed to make design
decisions for Exascale systems. This is what Co-Design is.

* These results will allow us to quantify technical challenges
such as starvation, latency, overhead, and delays due to
contention as well as the practical constraints of power,
reliability, generality, and programmability.

 We will then be able to assess new paradigms in the form of
new execution models to exploit runtime information,
manage asynchrony, co-design processor architectures and
applications, expose untapped logical and physical
parallelism, and ensure continued operation by graceful
degradation.

37

