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DAKOTA Training 

Calibration 
http://www.cs.sandia.gov/dakota

Learning goals:
• Understand what calibration is and is not and why it is important
• Differentiate between optimization and least-squares calibration 

mathematical formulations
• Use various DAKOTA methods to perform model calibration to data
• How to run DAKOTA: specify (input deck) and run an analysis

SAND 2009-0463P

http://www.cs.sandia.gov/dakota
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What is calibration?

• Calibration: Adjust model parameters x to maximize agreement with 
a set of experimental data.

• A.K.A. parameter estimation, parameter identification, systems 
identification, nonlinear least-squares, inverse problem.
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Why use calibration?

• Ensure sufficient simulation code predictive capability

• Decrease the amount of info lost due to using a model 
instead of the “truth” (minimize discrepancy)

• Increased understanding of design space

• Find parameters yielding improved model robustness

• Calibration is not validation! Separate data should be used 
for calibration vs. validation.
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Nonlinear Least Squares

• Calibration problems are often formulated to minimize the two 
norm of the error between the model and data: minimize

• Example: osborne1 analytic test problem, with i = 1,…,33:

• A specialized class of optimization algorithms exploit this 
structure for efficient solution without second derivative 
information (more coming soon)   
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method,
nl2sol
max_iterations = 
convergence_tolerance = 

model, 
single

variables,
continuous_design = 5
cdv_initial_point .5 1.5 -1 .01 .02 
cdv_lower_bounds .3 0.7 -2 .001 .001 
cdv_upper_bounds .6 1.8 0 .2 .23 
cdv_descriptor 'x1' 'x2' 'x3' 'x4' 'x5’

interface,
system

analysis_driver = './osborne1'
responses,

analytic_gradients
no_hessians

DAKOTA Input: osborne1

Method independent 
options

num_least_square_terms = 33
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Run Dakota on osborne1

> cd nlls
> dakota –i osborne1.in

<<<<< Function evaluation summary: 27 total (26 new, 1 duplicate)
<<<<< Best parameters =

3.7541004764e-01 cdv_1
1.9358463401e+00 cdv_2
-1.4646865611e+00 cdv_3
1.2867533504e-02 cdv_4
2.2122702031e-02 cdv_5

<<<<< Best residual norm = 7.3924926090e-03; 0.5 * norm
<<<<< Best residual terms =

2.5698266188e-03
-4.4759880011e-03
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Using a Separate 
Data Source (di ): osborne1b(b)

method nl2sol
output silent
convergence_tolerance = -1. 

variables,
continuous_design = 5
initial_point .5 1.5 .01 -1 .02
lower_bounds .2 1.0 .005 -1.5 .01
upper_bounds .6 2.0 .012 1.5 .05

interface,
system
analysis_driver = ’./osborne1b’

responses,
num_least_squares_terms = 33
least_squares_data_file ’osborne1_y’
analytic_gradients # For finite differences, comment this
# numerical_gradients # and uncomment this line.
no_hessians
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Least-squares Structure
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Algorithms vary in how they approximate this Hessian.

• When minimizing f(x) with gradient-based methods, can take 
advantage of the form of its derivatives:
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Hessian Approximations
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DAKOTA Method Selection

NL2SOL can handle highly nonlinear problems.

Calibration 
Method Step Control Unconstrained Bounds

Linear/
Nonlinear

nl2sol trust region X X

nlssol line search X X X

optpp_g_newton trust region or 
line search

X X X
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Confidence Intervals on Params

dakota lls.in

...
<<<<< Best parameters =
3.9975104529e-01 cdv_1
7.8306751279e-01 cdv_2
-1.1317783545e-01 cdv_3
...

Confidence Interval for cdv_1
is [ -5.2378467908e-01, 1.3232867697e+00 ]

Confidence Interval for cdv_2
is [ -9.4840422538e-01, 2.5145392510e+00 ]

Confidence Interval for cdv_3
is [ -1.5865346409e+00, 1.3601789700e+00 ]
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Example: Electrical Application

• Radiation-aware 
electrical models 

• Predict responses of 
electrical devices in 
hostile environments

• Building blocks of a 
large electrical system 
being examined 
hierarchically

• Access to code and 
model developers

System-Level Circuit
(ASIC + Subcircuits)

Subcircuit
(analog)

ASIC
(Large digital circuit)

Single
Device

Hierarchical Electrical Model
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Least Squares Objective Function

N = number of tests
Ti = (relevant) number of experimental values for test i
wi(Ti) = weighting factor (depends on number of 

experimental points)
Si(t;x) = simulated value, calculated with parameters x, 

corresponding to experimental point t for experiment i
ei(t) = test value of point t in test i
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Parameters

• Device model has ~30 parameters
• Parameters ranked by modeler

– How much does the model rely on the 
parameter being chosen correctly?

– How uncertain are we about the current value 
being used?

• Selected 
– 8 parameters for calibration
– Either physical parameters or covering “missing” 

physics
• Modeler provided bounds and starting points 

by “hand tuning” process
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Sample Signal Calibration
• Calibration of 8 circuit parameters to match experimental 

signal (G. Gray, M. M-C)
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EXTRA SLIDES
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Examples in nlls.tgz

gzip -dc nlls.tgz | tar xf -

gives directory nlls containing:

lls analysis driver compiled from lls.c
lls.c source for lls
lls.in DAKOTA input file using lls
osborne1 python script as analysis driver
osborne1[ab] variations on osborne1 script
osborne1*.in input files using osborne1*
osborne1 y right-hand side file (data) for osborne1b 

and osborne1bb
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nl2sol  method dependent options 

{nl2sol} \
[function_precision = <REAL>] \
[absolute_conv_tol = <REAL>] \ 
[x_conv_tol = <REAL>] \
[singular_conv_tol = <REAL>] \
[singular_radius = <REAL>] \
[false_conv_tol = <REAL>] \
[initial_trust_radius = <REAL>] \
[covariance = <INTEGER>] \
[regression_diagnostics] \

Reference Manual Chapter 2
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Circuit Simulator

• Written at Sandia to support electrical (circuit) design 
simulation 

• Started with Berkeley SPICE 3f5 
– Mostly Algebraic/Differential Equations with Behavioral 

Model Options
– Physics based models (instead of empirical based models)
– Improvement over industry standard PSPICE capability

• Massively parallel code that allows simulation of large-scale 
complex system circuit model
– Investigate circuit interactions
– Simulate large digital components

Hutchinson, Keiter, Hoekstra, Rankin, Waters, Russo, Wix, Ballard, …
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