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Learning goals: Understand (at a high level):
• DAKOTA’s key iterative analysis capabilities
• DAKOTA framework benefits
• How DAKOTA interfaces with a simulation (computational 

model)
• How to run DAKOTA: specify (input deck) and run an 

analysis
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DAKOTA in a Nutshell

• What are the crucial factors/parameters and how do they affect key 
metrics? (sensitivity)

• How safe, reliable, robust, or variable is my system? (quantification of 
margins and uncertainty: QMU, UQ)

• What is the best performing design or control? (optimization)
• What models/parameters best match experimental data? (calibration)
• All rely on iterative analysis with a computational model for the 

phenomenon of interest (explore each type in this class)

Design and Analysis toolKit for Optimization and Terascale Applications

Answer fundamental science and engineering 
questions with computational models (simulations)



Automated Iterative Analysis

Automate typical “parameter variation” studies with 
advanced methods and a generic interface to your simulation

DAKOTA 
optimization, sensitivity analysis, 

parameter estimation, 
uncertainty quantification

Computational Model (simulation)
• Black box: any code: mechanics, circuits, 
high energy physics, biology, chemistry

• Semi-intrusive: Matlab, ModelCenter, Python 
SIERRA multi-physics, SALINAS, Xyce

response 
metrics

parameters 
(design, UC, 

state)

• Can support experimental testing: examine many accident 
conditions with computer models, then physically test a few 
worst-case conditions.



Gradient-based Optimization
• DOT: frcg, bfgs, mmfd, slp, sqp
• CONMIN: frcg, mfd
• NPSOL sqp
• NLPQLP sqp
• OPT++: prcg, QN NIP, FDN NIP, FN NIP
• Dynamic plug-in: SNOPT, …
Derivative-free Optimization
• COLINY: PS, EA, Solis-Wets, COBYLA, DIRECT
• JEGA: MOGA, SOGA
• NCSU: DIRECT, IFFCO
• OPT++: PDS
• APPSPACK, EGO, TMF
Parameter estimation (calibration)
• Nonlinear least squares: NL2SOL, NLSSOL, 

OPT++ Gauss-Newton

Sensitivity/statistical analysis
• Parameter studies: vector, list, centered, grid
• Design of experiments: 

–DDACE: LHS, MC, grid, OA, OA_LHS, CCD, BB
–FSUDace: CVT, Halton, Hammersley
–PSUADE: MOAT

Uncertainty quantification
• Sampling: LHS, MC, Incr. LHS, IS/AIS/MMAIS
• Local Reliability: MVFOSM/MVSOSM, 

x/u AMV/AMV2, x/u AMV+/AMV2+, 
x/u TANA, FORM/SORM

• Global Reliability: EGRA
• Stochastic expansions: Wiener-Askey gen. 

Polynomial Chaos (Hermite, Legendre, Laguerre, Jacobi, 
gen. Laguerre); Stochastic collocation (Lagrange)

• Epistemic: Second-order probability, 
Dempster Shafer Theory of Evidence

Time-tested and advanced algorithms for deterministic and probabilistic 
analysis in a single toolkit to address simulations that are: nonsmooth, 
discontinuous, multimodal, expensive, mixed variable, failure-prone

Core Methods



DAKOTA C++ Framework Goals

• Unified software infrastructure: reuse tools and common interfaces; integrate 
commercial, open-source, and research algorithms

• Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal responses, 
probabilistic analysis and design, mixed variables, unreliable gradients/simulations

• Object-oriented code; modern software quality practices: 
– Subversion, Bugzilla, Mailman, ViewVC, gcov, cppUnit
– Nightly platform builds with ~750 serial/parallel regression tests

• Impact: tool for DOE labs and external partners; broad application deployment; free 
via GNU GPL (>4000 download registrations)
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responsesvariables/parameters

Flexibility with Models

• functions: objectives, 
constraints, LSQ 
residuals, generic

• gradients: numerical, 
analytic

• Hessians: numerical, 
analytic, quasi

user application 
(simulation)

system, fork, direct, grid

optional approximation (surrogate)
• global (polynomial 1/2/3, neural net,  
kriging/Gaussian proc., MARS, RBF)

• local (Taylor); multipoint (TANA/3)
• hierarchical, multi-fidelity

• design: continuous, 
discrete

• uncertain: (log)normal, 
(log)uniform, interval, 
triangular, histogram, 
beta/gamma, EV I, II, III

• state: continuous, 
discrete

DAKOTA models map inputs to response metrics of interest:

Flexible interface to user application (computational model/simulation)

• May be cheap (analytic function, linear analysis); typically costly 
(finite element mesh with millions of DOF, transient analysis of integrated circuit 
with millions of transistors)  

• Built-in response surfaces/meta-models/surrogates improve efficiency

• May run tightly-coupled, locally as separate process, in parallel 
on a cluster, remotely on a distributed resource

integrate parameters into 
application inputs

extract relevant metrics



Uncertainty
• Second order probability
• Uncertainty of optima

Nonlinear least squares
• Surrogate-based calibration
• Model calibration under 

uncertainty

Optimization
• Surrogate-based: data fit, multifidelity, ROM
• Mixed integer nonlinear programming (MINLP): 

PEBBL (parallel branch and bound)
• Optimization under uncertainty

– TR-SBOUU, RBDO (Bi-level, Sequential)
– MCUU, PC-BDO, EGO/EGRA, Epistemic, …

• Hybrids (e.g., global/local)
• Pareto set
• Multi-start
• Multilevel methods

Strategies 
(and advanced/multi-component methods)

Strategies (general nesting, layering, sequencing and recasting 
facilities) combine methods to enable advanced studies:

• opt within opt (multilevel opt & hierarchical MDO)
• UQ within UQ (second-order probability)
• UQ within opt (OUU) and NLS (MCUU)
• opt within UQ (uncertainty of optima)
with and without surrogate model indirection

global 
optimization

local 
opt. 

epistemic 
sampling

aleatory 
sampling

simulation

local 
opt. 

local 
opt. 



Nested parallel models support large-scale applications and architectures.

1. SMP/multiprocessor 
workstations: Asynchronous 
(external job allocation)

2. Cluster of workstations: 
Message-passing 
(internal job allocation)

3. Cluster of SMP’s: Hybrid 
(service/compute model)

4. MPP (e.g. 
RedStorm): 
Internal MPI 
partitions 
(nested 
parallelism)

Serial 
DAKOTA

job1 &    job2 &    job3 &    job4 &

master
slave slave slave slave

job1          job2          job3          job4

master
slave slave slave slave

jobs &      jobs &      jobs &      jobs &

Scalable Parallelism



Additional Topics 
(revisit later today per class interest)

General features
• Restart
• Evaluation cache
• Utilities in dakota_restart_util
• Tabular graphics data
• Failure capturing: abort, retry, recover, 

ignore
• Constraint specification: linear, 

nonlinear; equality, inequality
• Input/output scaling
• Matlab interface

Approximation methods
• Global data fit surrogate methods 

(polynomials, MARS, Kriging, etc.)
• Local surrogate methods (Taylor 

series, multipoint)
• Hierarchical:  high/low fidelity models
• Corrections

Strategies/Advanced approaches
• Nested models: OUU
• Multi-objective (Pareto) optimization
• Multistart; multi-level hybrid
• Surrogate-based optimization (variety of 

constraint handling approaches): trust 
region; EGO/EGRA

• Reliability-based design optimization
• Advanced UQ topics:  polynomial chaos, 

second-order probability, Dempster-Shafer, 
surrogate-based UQ

• AMPL: for analytic problems / algebraic 
mappings

Parallel capabilities: message passing, 
asynchronous local, hybrid

• Asynchronous evaluations 
• Dakota parallel, application serial
• Dakota serial, application parallel
• Multi-level parallel: concurrent iteration, 

concurrent function evaluations, 
concurrent analyses, 

• multiprocessor simulations



DAKOTA Getting Started

• Key resource: http://www.cs.sandia.gov/dakota
– Extensive documentation (user, reference, developer) 
– Support mailing lists / archives
– Software downloads: releases and nightly stable & VOTD builds 

(freely available worldwide via GNU GPL)

• Supported platforms
• Primary: Linux (Red Hat)
• Other UNIX: Sun Solaris, IBM AIX (SGI IRIX, DEC OSF phasing out)
• Windows (via Cygwin & MINGW, MSVS via Cmake/SCons)
• Mac OSX (PPC and Intel)
• Special-purpose: Red Storm

• Users Manual, Chapter 2: Tutorial (used momentarily)

• Help getting started or using DAKOTA with your application: 
dakota-users@software.sandia.gov (includes DAKOTA 
development team and internal/external user community)

http://www.cs.sandia.gov/dakota
mailto:dakota-users@software.sandia.gov


DAKOTA Overview

Learning goals: Understand (at a high level):
• DAKOTA’s key iterative analysis capabilities
• DAKOTA framework benefits
• How DAKOTA interfaces with a simulation 

(computational model)
• How to run DAKOTA: specify (input deck) and run an 

analysis
– Rosenbrock example problem
– DAKOTA execution flow: input and output files
– Simulation code interaction



DAKOTA Example: 
Rosenbrock Function

f(x1,x2) = 100*(x2-x1*x1)2
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Vector Parameter Study

• Example: 11 equally-spaced 
samples along a vector in the 
x1-x2 parameter space

– Based on user-defined start point, 
end point, number of samples

• Not especially useful with N=2, 
but can be when N>2

– With large steps, provides some 
global trend info on f-values

– With small steps, provides some 
local trend info on f-values 
(quasi-derivatives)

User’s Manual Section 2.4.2



DAKOTA Execution & Info Flow

DAKOTA Input File
• Commands
• Options
• Parameter definitions
• File names

DAKOTA Output Files
• Raw data (all x- and f-values)
• Sensitivity info
• Statistics on f-values
• Optimality info

CALORE thermal analysis
ALEGRA shock physics
SALINAS structural dynam
Premo high speed flow

(your code here)

Code
Input

Code
Output

DAKOTA Parameters File
{x1 = 123.4}
{x2 = -33.3}, etc.

Use APREPRO/DPREPRO 
to cut-and-paste x-values 
into code input file

User-supplied automatic 
post-processing of code 
output data into f-values 

DAKOTA executes 
sim_code_script 

to launch a 
simulation job

DAKOTA Results File
999.888 f1
777.666 f2, etc.

DAKOTA Executable
Sensitivity Analysis, 

Optimization, Uncertainty 
Quantification, Parameter 

Estimation



Dakota Input Deck

6 potential sections (2 optional, 4 required): 
• Strategy (optional): single_method, hybrid, multi_start, 

pareto_set
• Method (required): parameter studies, nondeterministic 

methods, optimization methods
• Model (optional): single, surrogate (global, local, 

hierarchical), nested
• Variables (required): design, uncertain, and state variables; 

continuous/discrete
• Interface (required): system call, fork, or direct; specify 

parallel options
• Responses (required): number of responses/constraints, 

gradients, Hessian

• Examine examples/tutorial/dakota_rosenbrock_vector.in



Dakota Execution and Output

• DAKOTA is run from a UNIX/command prompt 
(limited Windows interface; graphical user interface in progress)

• Specifying output file on the command line logs input variable and 
response information for each function evaluation, as well as 
additional information, depending on the method: 
>> dakota –i my_run.in –o my_run.out

• If strategy includes tabular_graphics_data, DAKOTA 
generates a tabular listing of inputs and outputs, called 
dakota_tabular.dat.  Useful for Excel, Matlab, or other package 
import.

• Run dakota_rosenbrock_vector.in; examine graphics and 
add tabular output.



DAKOTA Execution & Info Flow

DAKOTA Input File
• Commands
• Options
• Parameter definitions
• File names

DAKOTA Output Files
• Raw data (all x- and f-values)
• Sensitivity info
• Statistics on f-values
• Optimality info

CALORE thermal analysis
ALEGRA shock physics
SALINAS structural dynam
Premo high speed flow

(your code here)

Code
Input

Code
Output

DAKOTA Parameters File
{x1 = 123.4}
{x2 = -33.3}, etc.

Use APREPRO/DPREPRO 
to cut-and-paste x-values 
into code input file

User-supplied automatic 
post-processing of code 
output data into f-values 

DAKOTA executes 
sim_code_script 

to launch a 
simulation job

DAKOTA Results File
999.888 f1
777.666 f2, etc.

DAKOTA Executable
Sensitivity Analysis, 

Optimization, Uncertainty 
Quantification, Parameter 

Estimation



DAKOTA Parameters File

• The file is typically named “params.in” and is generated by 
DAKOTA for each function evaluation

• The file lists the number of variables and the variable 
values in order, one value per line, followed by additional 
information:

• Your script will extract the variables from this file and insert 
them into your code input deck. 
See Chapters 12, 13, and 14

2 variables
-2.000000000000000e+00 x1
-2.000000000000000e+00 x2

1 functions
1 ASV_1
2 derivative_variables
1 DVV_1
2 DVV_2
0 analysis_components



DAKOTA Results File

• The file is typically named “results.out” and is generated by the 
simulation code (or script) for return to DAKOTA.

• You need to extract the relevant response(s) from your code 
output and write to the results.out file with the function values in 
order, one value per line:

f1
f2
...
fM

• You can add a text label after the function value (on the same 
line) to help you keep track of the f-values / constraints.

• If your code generates gradients of the function-values and/or 
Hessian values (matrix of 2nd derivatives), also report in this file. 

3.609000000000000e+03 f
[ -4.806000000000000e+03 -1.200000000000000e+03 ]



•

 

Text input/output 

Strategy 
Method 
Model 
Variables 
Interface 
Responses

•

 

Output graphics

DAKOTA Input/Output (Pre-GUI)



JAGUAR Interface



JAGUAR Interface



Bonus Slides



New Capability in DAKOTA 4.2

• Uncertainty quantification
– stochastic collocation method via Lagrange polynomial interpolation
– more scalable and higher order generalized polynomial chaos (and 

SC) methods (Smolyak sparse grids w/ mixed integration rules and 
numerically generated polynomials)

– extended Latin hypercube sampling distributions (Gumbel, Frechet), 
variable transformations, incremental random sampling

• Optimization and calibration
– new bi-level, sequential, and multifidelity optimization under 

uncertainty algorithms based on stochastic collocation and 
polynomial chaos

– new APPSPACK interface to directly handle linear/nonlinear 
constraints

– generalization of efficient global optimization technique
– new capability for surrogate-based model calibration
– improved support for model calibration under uncertainty and 

weighted nonlinear least squares



New Capability in DAKOTA 4.2

• Framework
– new radial basis function and moving least squares surrogates
– more efficient evaluation cache
– model recursion refinements
– improved analysis driver specification

• Usability
– newly designed input parser with better feedback on errors
– additional method tutorials and examples demonstrating 

coupling DAKOTA to parallel simulation codes for analysis
– improved platform support for Macintosh and Windows
– more convenient and robust integration into other software 

libraries, such as Trilinos and Xyce, with special emphasis on 
efficiency for large-scale applications



1. Algorithmic coarse-grained parallelism: independent fn. evaluations 
performed concurrently:

• Gradient-based (e.g., finite difference gradients, speculative opt.)
• Nongradient-based (e.g., GAs, PS, Monte Carlo)
• Approximate methods (e.g., DACE)
• Concurrent-method strategies (e.g., parallel B&B, island-model GAs, OUU)

2. Algorithmic fine-grained parallelism: computing the internal linear 
algebra of an opt. algorithm in parallel (e.g., large-scale opt., SAND)

3. Function evaluation coarse-grained parallelism: concurrent execution of 
separable simulations within a fn. eval. (e.g., multiple loading cases)

4. Function evaluation fine-grained parallelism: parallelization of the 
solution steps within a single analysis code (e.g., SALINAS, MPSalsa)

Math analysis & experiments

• identify schemes which 
maximize parallel efficiency 
and are robust w.r.t. 
variability

• build schemes into 
automatic configuration 
utilities

static scheduling
τ1=8

τ1=4

τ1=2

τ1=1

concurrency at lowest scheduling level

τ1/τ2/τ3 = 8/4/1 is preferred

4096 procs.: 32 x 128
simulation heterogeneity
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Exploiting Parallelism
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