
DAKOTA Training

DAKOTA Overview
http://www.cs.sandia.gov/dakota

Learning goals: Understand (at a high level):
• DAKOTA’s key iterative analysis capabilities
• DAKOTA framework benefits
• How DAKOTA interfaces with a simulation (computational

model)
• How to run DAKOTA: specify (input deck) and run an

analysis

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND 2009-0260P

http://www.cs.sandia.gov/dakota

DAKOTA Team

Mike Eldred
Project Lead

1411

Brian Adams
Product Mgr.

1411

Karen Haskell
Support Mgr.

9326

Jim Stewart
Business Mgr.

1411

• John Eddy (6342)
• Bill Hart (1412)
• Patty Hough (8964)

• Tammy Kolda (8964)
• John Siirola (1433)
• Jean-Paul Watson (1412)

Bill Bohnhoff
1341

Dave Gay
1411

Laura Swiler
1411

DAKOTA in a Nutshell

• What are the crucial factors/parameters and how do they affect key
metrics? (sensitivity)

• How safe, reliable, robust, or variable is my system? (quantification of
margins and uncertainty: QMU, UQ)

• What is the best performing design or control? (optimization)
• What models/parameters best match experimental data? (calibration)
• All rely on iterative analysis with a computational model for the

phenomenon of interest (explore each type in this class)

Design and Analysis toolKit for Optimization and Terascale Applications

Answer fundamental science and engineering
questions with computational models (simulations)

Automated Iterative Analysis

Automate typical “parameter variation” studies with
advanced methods and a generic interface to your simulation

DAKOTA
optimization, sensitivity analysis,

parameter estimation,
uncertainty quantification

Computational Model (simulation)
• Black box: any code: mechanics, circuits,
high energy physics, biology, chemistry

• Semi-intrusive: Matlab, ModelCenter, Python
SIERRA multi-physics, SALINAS, Xyce

response
metrics

parameters
(design, UC,

state)

• Can support experimental testing: examine many accident
conditions with computer models, then physically test a few
worst-case conditions.

Gradient-based Optimization
• DOT: frcg, bfgs, mmfd, slp, sqp
• CONMIN: frcg, mfd
• NPSOL sqp
• NLPQLP sqp
• OPT++: prcg, QN NIP, FDN NIP, FN NIP
• Dynamic plug-in: SNOPT, …
Derivative-free Optimization
• COLINY: PS, EA, Solis-Wets, COBYLA, DIRECT
• JEGA: MOGA, SOGA
• NCSU: DIRECT, IFFCO
• OPT++: PDS
• APPSPACK, EGO, TMF
Parameter estimation (calibration)
• Nonlinear least squares: NL2SOL, NLSSOL,

OPT++ Gauss-Newton

Sensitivity/statistical analysis
• Parameter studies: vector, list, centered, grid
• Design of experiments:

–DDACE: LHS, MC, grid, OA, OA_LHS, CCD, BB
–FSUDace: CVT, Halton, Hammersley
–PSUADE: MOAT

Uncertainty quantification
• Sampling: LHS, MC, Incr. LHS, IS/AIS/MMAIS
• Local Reliability: MVFOSM/MVSOSM,

x/u AMV/AMV2, x/u AMV+/AMV2+,
x/u TANA, FORM/SORM

• Global Reliability: EGRA
• Stochastic expansions: Wiener-Askey gen.

Polynomial Chaos (Hermite, Legendre, Laguerre, Jacobi,
gen. Laguerre); Stochastic collocation (Lagrange)

• Epistemic: Second-order probability,
Dempster Shafer Theory of Evidence

Time-tested and advanced algorithms for deterministic and probabilistic
analysis in a single toolkit to address simulations that are: nonsmooth,
discontinuous, multimodal, expensive, mixed variable, failure-prone

Core Methods

DAKOTA C++ Framework Goals

• Unified software infrastructure: reuse tools and common interfaces; integrate
commercial, open-source, and research algorithms

• Enable algorithm R&D, e.g., for non-smooth/discontinuous/multimodal responses,
probabilistic analysis and design, mixed variables, unreliable gradients/simulations

• Object-oriented code; modern software quality practices:
– Subversion, Bugzilla, Mailman, ViewVC, gcov, cppUnit
– Nightly platform builds with ~750 serial/parallel regression tests

• Impact: tool for DOE labs and external partners; broad application deployment; free
via GNU GPL (>4000 download registrations)

LHS/MC

Iterator

Optimizer

ParamStudy

COLINYNPSOLDOT OPT++

LeastSqDoE

GN

Vector

MultiD

List

DDACE CCD/BB

UQ

Reliability

DSTE

JEGACONMIN

NLSSOL

NL2SOLQMC/CVT

NLPQL

Center SFEM/PCE

EGO DIRECT

algorithms
hierarchy

TMF

PSUADE

EGRA

responsesvariables/parameters

Flexibility with Models

• functions: objectives,
constraints, LSQ
residuals, generic

• gradients: numerical,
analytic

• Hessians: numerical,
analytic, quasi

user application
(simulation)

system, fork, direct, grid

optional approximation (surrogate)
• global (polynomial 1/2/3, neural net,
kriging/Gaussian proc., MARS, RBF)

• local (Taylor); multipoint (TANA/3)
• hierarchical, multi-fidelity

• design: continuous,
discrete

• uncertain: (log)normal,
(log)uniform, interval,
triangular, histogram,
beta/gamma, EV I, II, III

• state: continuous,
discrete

DAKOTA models map inputs to response metrics of interest:

Flexible interface to user application (computational model/simulation)

• May be cheap (analytic function, linear analysis); typically costly
(finite element mesh with millions of DOF, transient analysis of integrated circuit
with millions of transistors)

• Built-in response surfaces/meta-models/surrogates improve efficiency

• May run tightly-coupled, locally as separate process, in parallel
on a cluster, remotely on a distributed resource

integrate parameters into
application inputs

extract relevant metrics

Uncertainty
• Second order probability
• Uncertainty of optima

Nonlinear least squares
• Surrogate-based calibration
• Model calibration under

uncertainty

Optimization
• Surrogate-based: data fit, multifidelity, ROM
• Mixed integer nonlinear programming (MINLP):

PEBBL (parallel branch and bound)
• Optimization under uncertainty

– TR-SBOUU, RBDO (Bi-level, Sequential)
– MCUU, PC-BDO, EGO/EGRA, Epistemic, …

• Hybrids (e.g., global/local)
• Pareto set
• Multi-start
• Multilevel methods

Strategies
(and advanced/multi-component methods)

Strategies (general nesting, layering, sequencing and recasting
facilities) combine methods to enable advanced studies:

• opt within opt (multilevel opt & hierarchical MDO)
• UQ within UQ (second-order probability)
• UQ within opt (OUU) and NLS (MCUU)
• opt within UQ (uncertainty of optima)
with and without surrogate model indirection

global
optimization

local
opt.

epistemic
sampling

aleatory
sampling

simulation

local
opt.

local
opt.

Nested parallel models support large-scale applications and architectures.

1. SMP/multiprocessor
workstations: Asynchronous
(external job allocation)

2. Cluster of workstations:
Message-passing
(internal job allocation)

3. Cluster of SMP’s: Hybrid
(service/compute model)

4. MPP (e.g.
RedStorm):
Internal MPI
partitions
(nested
parallelism)

Serial
DAKOTA

job1 & job2 & job3 & job4 &

master
slave slave slave slave

job1 job2 job3 job4

master
slave slave slave slave

jobs & jobs & jobs & jobs &

Scalable Parallelism

Additional Topics
(revisit later today per class interest)

General features
• Restart
• Evaluation cache
• Utilities in dakota_restart_util
• Tabular graphics data
• Failure capturing: abort, retry, recover,

ignore
• Constraint specification: linear,

nonlinear; equality, inequality
• Input/output scaling
• Matlab interface

Approximation methods
• Global data fit surrogate methods

(polynomials, MARS, Kriging, etc.)
• Local surrogate methods (Taylor

series, multipoint)
• Hierarchical: high/low fidelity models
• Corrections

Strategies/Advanced approaches
• Nested models: OUU
• Multi-objective (Pareto) optimization
• Multistart; multi-level hybrid
• Surrogate-based optimization (variety of

constraint handling approaches): trust
region; EGO/EGRA

• Reliability-based design optimization
• Advanced UQ topics: polynomial chaos,

second-order probability, Dempster-Shafer,
surrogate-based UQ

• AMPL: for analytic problems / algebraic
mappings

Parallel capabilities: message passing,
asynchronous local, hybrid

• Asynchronous evaluations
• Dakota parallel, application serial
• Dakota serial, application parallel
• Multi-level parallel: concurrent iteration,

concurrent function evaluations,
concurrent analyses,

• multiprocessor simulations

DAKOTA Getting Started

• Key resource: http://www.cs.sandia.gov/dakota
– Extensive documentation (user, reference, developer)
– Support mailing lists / archives
– Software downloads: releases and nightly stable & VOTD builds

(freely available worldwide via GNU GPL)

• Supported platforms
• Primary: Linux (Red Hat)
• Other UNIX: Sun Solaris, IBM AIX (SGI IRIX, DEC OSF phasing out)
• Windows (via Cygwin & MINGW, MSVS via Cmake/SCons)
• Mac OSX (PPC and Intel)
• Special-purpose: Red Storm

• Users Manual, Chapter 2: Tutorial (used momentarily)

• Help getting started or using DAKOTA with your application:
dakota-users@software.sandia.gov (includes DAKOTA
development team and internal/external user community)

http://www.cs.sandia.gov/dakota
mailto:dakota-users@software.sandia.gov

DAKOTA Overview

Learning goals: Understand (at a high level):
• DAKOTA’s key iterative analysis capabilities
• DAKOTA framework benefits
• How DAKOTA interfaces with a simulation

(computational model)
• How to run DAKOTA: specify (input deck) and run an

analysis
– Rosenbrock example problem
– DAKOTA execution flow: input and output files
– Simulation code interaction

DAKOTA Example:
Rosenbrock Function

f(x1,x2) = 100*(x2-x1*x1)2

+ (1-x1)2

-2 ≤

x1 ≤

2
-2 ≤

x2 ≤

2

Minimum: (x1,x2) = (1,1); f(1,1) = 0.0

-2 0 2
0

500

x1

-2 0 2
0

1000
2000

x1

-2 0 2
0

2000
4000

x1

-2 0 2
0

2000
4000

x2

-2 0 2
0

500

x2

-2 0 2
0

2000
4000

x2

Vector Parameter Study

• Example: 11 equally-spaced
samples along a vector in the
x1-x2 parameter space

– Based on user-defined start point,
end point, number of samples

• Not especially useful with N=2,
but can be when N>2

– With large steps, provides some
global trend info on f-values

– With small steps, provides some
local trend info on f-values
(quasi-derivatives)

User’s Manual Section 2.4.2

DAKOTA Execution & Info Flow

DAKOTA Input File
• Commands
• Options
• Parameter definitions
• File names

DAKOTA Output Files
• Raw data (all x- and f-values)
• Sensitivity info
• Statistics on f-values
• Optimality info

CALORE thermal analysis
ALEGRA shock physics
SALINAS structural dynam
Premo high speed flow

(your code here)

Code
Input

Code
Output

DAKOTA Parameters File
{x1 = 123.4}
{x2 = -33.3}, etc.

Use APREPRO/DPREPRO
to cut-and-paste x-values
into code input file

User-supplied automatic
post-processing of code
output data into f-values

DAKOTA executes
sim_code_script

to launch a
simulation job

DAKOTA Results File
999.888 f1
777.666 f2, etc.

DAKOTA Executable
Sensitivity Analysis,

Optimization, Uncertainty
Quantification, Parameter

Estimation

Dakota Input Deck

6 potential sections (2 optional, 4 required):
• Strategy (optional): single_method, hybrid, multi_start,

pareto_set
• Method (required): parameter studies, nondeterministic

methods, optimization methods
• Model (optional): single, surrogate (global, local,

hierarchical), nested
• Variables (required): design, uncertain, and state variables;

continuous/discrete
• Interface (required): system call, fork, or direct; specify

parallel options
• Responses (required): number of responses/constraints,

gradients, Hessian

• Examine examples/tutorial/dakota_rosenbrock_vector.in

Dakota Execution and Output

• DAKOTA is run from a UNIX/command prompt
(limited Windows interface; graphical user interface in progress)

• Specifying output file on the command line logs input variable and
response information for each function evaluation, as well as
additional information, depending on the method:
>> dakota –i my_run.in –o my_run.out

• If strategy includes tabular_graphics_data, DAKOTA
generates a tabular listing of inputs and outputs, called
dakota_tabular.dat. Useful for Excel, Matlab, or other package
import.

• Run dakota_rosenbrock_vector.in; examine graphics and
add tabular output.

DAKOTA Execution & Info Flow

DAKOTA Input File
• Commands
• Options
• Parameter definitions
• File names

DAKOTA Output Files
• Raw data (all x- and f-values)
• Sensitivity info
• Statistics on f-values
• Optimality info

CALORE thermal analysis
ALEGRA shock physics
SALINAS structural dynam
Premo high speed flow

(your code here)

Code
Input

Code
Output

DAKOTA Parameters File
{x1 = 123.4}
{x2 = -33.3}, etc.

Use APREPRO/DPREPRO
to cut-and-paste x-values
into code input file

User-supplied automatic
post-processing of code
output data into f-values

DAKOTA executes
sim_code_script

to launch a
simulation job

DAKOTA Results File
999.888 f1
777.666 f2, etc.

DAKOTA Executable
Sensitivity Analysis,

Optimization, Uncertainty
Quantification, Parameter

Estimation

DAKOTA Parameters File

• The file is typically named “params.in” and is generated by
DAKOTA for each function evaluation

• The file lists the number of variables and the variable
values in order, one value per line, followed by additional
information:

• Your script will extract the variables from this file and insert
them into your code input deck.
See Chapters 12, 13, and 14

2 variables
-2.000000000000000e+00 x1
-2.000000000000000e+00 x2

1 functions
1 ASV_1
2 derivative_variables
1 DVV_1
2 DVV_2
0 analysis_components

DAKOTA Results File

• The file is typically named “results.out” and is generated by the
simulation code (or script) for return to DAKOTA.

• You need to extract the relevant response(s) from your code
output and write to the results.out file with the function values in
order, one value per line:

f1
f2
...
fM

• You can add a text label after the function value (on the same
line) to help you keep track of the f-values / constraints.

• If your code generates gradients of the function-values and/or
Hessian values (matrix of 2nd derivatives), also report in this file.

3.609000000000000e+03 f
[-4.806000000000000e+03 -1.200000000000000e+03]

•

Text input/output

Strategy
Method
Model
Variables
Interface
Responses

•

Output graphics

DAKOTA Input/Output (Pre-GUI)

JAGUAR Interface

JAGUAR Interface

Bonus Slides

New Capability in DAKOTA 4.2

• Uncertainty quantification
– stochastic collocation method via Lagrange polynomial interpolation
– more scalable and higher order generalized polynomial chaos (and

SC) methods (Smolyak sparse grids w/ mixed integration rules and
numerically generated polynomials)

– extended Latin hypercube sampling distributions (Gumbel, Frechet),
variable transformations, incremental random sampling

• Optimization and calibration
– new bi-level, sequential, and multifidelity optimization under

uncertainty algorithms based on stochastic collocation and
polynomial chaos

– new APPSPACK interface to directly handle linear/nonlinear
constraints

– generalization of efficient global optimization technique
– new capability for surrogate-based model calibration
– improved support for model calibration under uncertainty and

weighted nonlinear least squares

New Capability in DAKOTA 4.2

• Framework
– new radial basis function and moving least squares surrogates
– more efficient evaluation cache
– model recursion refinements
– improved analysis driver specification

• Usability
– newly designed input parser with better feedback on errors
– additional method tutorials and examples demonstrating

coupling DAKOTA to parallel simulation codes for analysis
– improved platform support for Macintosh and Windows
– more convenient and robust integration into other software

libraries, such as Trilinos and Xyce, with special emphasis on
efficiency for large-scale applications

1. Algorithmic coarse-grained parallelism: independent fn. evaluations
performed concurrently:

• Gradient-based (e.g., finite difference gradients, speculative opt.)
• Nongradient-based (e.g., GAs, PS, Monte Carlo)
• Approximate methods (e.g., DACE)
• Concurrent-method strategies (e.g., parallel B&B, island-model GAs, OUU)

2. Algorithmic fine-grained parallelism: computing the internal linear
algebra of an opt. algorithm in parallel (e.g., large-scale opt., SAND)

3. Function evaluation coarse-grained parallelism: concurrent execution of
separable simulations within a fn. eval. (e.g., multiple loading cases)

4. Function evaluation fine-grained parallelism: parallelization of the
solution steps within a single analysis code (e.g., SALINAS, MPSalsa)

Math analysis & experiments

• identify schemes which
maximize parallel efficiency
and are robust w.r.t.
variability

• build schemes into
automatic configuration
utilities

static scheduling
τ1=8

τ1=4

τ1=2

τ1=1

concurrency at lowest scheduling level

τ1/τ2/τ3 = 8/4/1 is preferred

4096 procs.: 32 x 128
simulation heterogeneity

R
el

at
iv

e
ef

fic
ie

nc
y

Exploiting Parallelism

	DAKOTA Training��DAKOTA Overview�http://www.cs.sandia.gov/dakota
	DAKOTA Team
	DAKOTA in a Nutshell
	Automated Iterative Analysis
	Core Methods
	DAKOTA C++ Framework Goals
	Flexibility with Models
	Strategies�(and advanced/multi-component methods)
	Scalable Parallelism
	Additional Topics�(revisit later today per class interest)
	DAKOTA Getting Started
	DAKOTA Overview
	DAKOTA Example:�Rosenbrock Function
	Vector Parameter Study
	DAKOTA Execution & Info Flow
	Dakota Input Deck
	Dakota Execution and Output
	DAKOTA Execution & Info Flow
	DAKOTA Parameters File
	DAKOTA Results File
	DAKOTA Input/Output (Pre-GUI)
	JAGUAR Interface
	JAGUAR Interface
	Bonus Slides
	New Capability in DAKOTA 4.2
	New Capability in DAKOTA 4.2
	Exploiting Parallelism

