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DAKOTA Training
 

Sensitivity Analysis
 http://www.cs.sandia.gov/dakota

Learning goals:
• Define sensitivity analysis and know when and why to apply it
• Use a DAKOTA parameter study to perform local sensitivity 

analysis
• Use DAKOTA to perform LHS with correlation analysis; 

understand potential pitfalls
• Understand use of orthogonal arrays
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Sensitivity Analysis 
and UQ Terminology

• Sensitivity Analysis (SA):
– How do code outputs vary due to changes in code inputs?
– Local sensitivity:

 

code output gradient (derivative) data for a specific set 
(or sets) of code input parameter values

– Global sensitivity:

 

the general trends of the code outputs over the full 
range of code input parameter values (linear, quadratic, etc.)

• Uncertainty Quantification (UQ):
– What are the statistics or probability distributions on code outputs, given 

probability distributions on code inputs? (aleatoric

 

UQ)
• Estimate Probability[f

 

> f*], e.g., probability of system failure
– What are the possible/plausible code outputs? (epistemic UQ)

• Validation:
– How “close”

 

are my code output predictions to experimental data, 
including UQ for both?

• Quantification of margins and uncertainties (QMU):
– How “close”

 

are my code output predictions (including UQ) to the 
system’s required performance level?
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Examples of Sensitivity Analysis 

x1

f(x1 )

x1
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• Sensitivity analysis examines variations in f(x1

 

) 
due to perturbations in x1

 

.
– Local sensitivities are typically partial derivatives.

• Given a specific x1, what is the slope at that point?

– Global sensitivities are typically found via regression.
• What is the trend of the function over all values of x1?

local

global
local

local
local

global global
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Sensitivity Analysis Methods

• Sensitivity analysis methods:
– Simple 1-parameter and multi-parameter studies*
– Importance factors*
– Random sampling and correlation analysis*
– Random sampling and analysis of variance
– Standardized Regression Coefficients
– Variance based decomposition*
– Orthogonal arrays
– Many others....

• Relevant software tools:
– DAKOTA
– Minitab statistics package (SNL site license)
– JMP statistics package (30 licenses for ASC users –

 

contact D. Lifke)
– Mathematica
– Matlab

 

with Statistics Toolbox
– Others (Origin, etc.)

Workhorse 
methods

* Capability in DAKOTA
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Sensitivity Analysis Example 

• Explore sensitivity analysis concepts by applying 
DAKOTA to the Rosenbrock

 
example:

– Sensitivity analysis with gradients
– Sensitivity analysis with sampling methods and 

correlation analysis

• Goal of sensitivity analysis:
 

identify most 
important variables and their interactions
– Provide a focus for resources for additional model and/or 

code development
– Provide a basis for using surrogate models
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Sensitivity Analysis
 with Derivatives

• Gradients (e.g., ∂R/∂x1 and ∂R/∂x2) typically estimated 
numerically via finite differences

• For inputs on radically different scales, use scaled derivatives
• Provides local sensitivity information
• Be wary of extrapolating trends
• No interaction data from this approach, but still useful
• Recommend against averaging derivatives across space: for 

Rosenbrock

 

average ∂R/∂x1 = -2, ∂R/∂x2 = -533

Goal: Use a grid 
parameter study to 
understand how 
response f(x1,x2) 
varies with respect 
to the inputs x1 and 
x2
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strategy,
single_method
graphics
tabular_graphics_data

method,
multidim_parameter_study
partitions = 2  2

model,
single

variables,
continuous_design = 2
cdv_lower_bounds -2.0     -2.0
cdv_upper_bounds 2.0      2.0
cdv_descriptors 'x1'     'x2'

interface,
direct
analysis_driver = 'rosenbrock‘

responses,
num_objective_functions = 1             
numerical_gradients
method_source dakota
fd_gradient_step_size=1.e-6
no_hessians

Rosenbrock
 

Example:
 SA with Derivatives

Parameter study input: modified examples/tutorial/dakota_rosenbrock_2d.in

Parameter Study Output

%eval_id x1 x2 obj_fn 
1 -2 -2 3609 
2 0 -2 401
3 2 -2 3601 
4 -2 -2 1609
5 0 -2 1 
6 2 -2 1601 
7 -2 -2 409
8 0 -2 401
9 2 -2 401 

Parameters for function evaluation 3:
-2.0000000000e+00 x1
-1.9999980000e+00 x2

Active response data for function evaluation 3:
Active set vector = { 1 }

3.6089976000e+03 response_fn_1

>>>>> Total response returned to iterator:

Active set vector = { 3 } Deriv vars vector = { 1 2 }
3.6090000000e+03 response_fn_1

[ -4.8059943983e+03 -1.1999998003e+03 ] response_fn_1 gradient
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Results: Local SA for 
Rosenbrock

 
Function

Goal:
Understand how 
response f(x1,x2) varies 
with respect to the 
inputs x1 and x2

x1 x1 x2 Rosenbrock dR/dx1 dR/dx2
1 -2 -2 3609 -4.81E+03 -1.20E+03
2 0 -2 401 -2.00E+00 -4.00E+02
3 2 -2 3601 4.80E+03 -1.20E+03
4 -2 0 1609 -3.21E+03 -8.00E+02
5 0 0 1 -2.00E+00 9.99E-07
6 2 0 1601 3.20E+03 -8.00E+02
7 -2 2 409 -1.61E+03 -4.00E+02
8 0 2 401 -2.00E+00 4.00E+02
9 2 2 401 1.60E+03 -4.00E+02



9

Sensitivity Analysis  
with Sampling

• Assume inputs fall within lower and upper bounds
• Generate uniform random samples over these intervals
• Compute response value at each sample point
• Look at correlation results 

– Simple and partial correlations
– Raw and rank correlations

• Caution:  correlation only measures the strength and 
direction of a linear relationship between variables

• Correlation coefficient near 
– 0 indicates no relationship
– 1 indicates strong positive relationship 

(as x increases, y increases)
– -1 indicates strong negative relationship 

(as x increases, y decreases)
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Rosenbrock
 

Function:
 SA with Sampling

Sampling Input Sampling Output

strategy,
single_method
graphics
tabular_graphics_data

method,
nond_sampling
samples = 200 seed = 17
sample_type random
response_levels = 100.0

model,
single

variables,
uniform_uncertain = 2
uuv_lower_bounds -2.0  -2.0
uuv_upper_bounds 2.0   2.0
uuv_descriptor 'x1'  'x2'

interface,
direct
analysis_driver = 'rosenbrock‘

responses,
num_response_functions = 1             
no_gradients
no_hessians

Statistics based on 200 samples:

Moments for each response function:
response_fn_1:  Mean = 4.43855e+02  Std. Dev. = 5.88920e+02  Coeff. of 
Variation = 1.32683e+00

95% confidence intervals for each response function:
response_fn_1:  Mean = ( 3.61736e+02, 5.25973e+02 ), Std Dev = ( 5.36308e+02, 
6.53068e+02 )

Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:

Response Level      Probability Level  Reliability Index  General Rel Index
-------------- ----------------- ----------------- -----------------

1.0000000000e+02   3.7000000000e-01

Simple Correlation Matrix among all inputs and outputs:
x1           x2 response_fn_1 

x1  1.00000e+00 
x2 -4.33667e-03  1.00000e+00 

response_fn_1  6.45646e-02 -4.81363e-01  1.00000e+00 

Partial Correlation Matrix between input and output:
response_fn_1 

x1  7.12791e-02 
x2 -4.82094e-01 
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Global SA Results for
 Rosenbrock

 
Function

Simple Correlations

Partial Correlations

 x1 x2 response_fn_1
x1 1.00E+00
x2 -8.15E-03 1.00E+00
response_ -4.91E-02 -5.06E-01 1.00E+00

 response_fn_1
x1 -6.17E-02
x2 -5.07E-01
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Global SA Results for 
Rosenbrock

 
Function

• Correlation between R and x1 is low because it is strongly 
negative as x1 goes from -2 to 0, then strongly positive as 
x1 goes from 0 to 2. 

• If we re-define the input bounds between 0 and 2 instead of 
-2 to 2, we get a very different picture: 

 x1 x2 response_fn_1
x1 1.00E+00
x2 -8.15E-03 1.00E+00
response_fn_1 5.60E-01 -1.30E-01 1.00E+00

 response_fn_1
x1 5.64E-01
x2 -1.52E-01 Correlations are a great SA tool 

and very useful to screen out 
unimportant variables, but use with care! 

Correlations are a great SA tool 
and very useful to screen out 
unimportant variables, but use with care! 
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Design of Experiments

• Design of Experiments (DOE) is sometimes used to help 
understand variable importance.

• Design and Analysis of Computer Experiments (DACE) 
refers to DOE for computer models.  

• Big difference between physical and computer 
experiments:

 

many of our codes are deterministic (e.g., 
same input settings will produce same outputs under 
replication), whereas physical experiments are usually not.

• DACE can be used to help understand range of outputs and 
important variables.  It is generally NOT an uncertainty 
propagation method.

• Prototypical method: orthogonal arrays
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Orthogonal Arrays

• For each level of one factor, all levels of the other factors occur an 
equal number of times:  “cancel out”

 

effect.  
• Orthogonality: statistical independence between the columns of the 

experimental design matrix
• Standard analysis involves comparison of main effects:  Is the mean 

of factor 1 at level 1 different than the mean of factor 1 at level 2? 
• Large databases of OAs

 

have been compiled by various industry and 
statistical organizations.

• Example:  

Exp. No Var. 1 Var. 2 Var. 3 Var. 4 Var. 5 Var. 6 Var. 7
1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2
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Example SA with Orthogonal Array

OA Input

OA Output

strategy,
single_method
graphics
tabular_graphics_data

method,
dace oas
samples = 49 symbols = 7
main_effects

model,
single

variables,
continuous_design = 2
cdv_lower_bounds -2.0     -2.0
cdv_upper_bounds 2.0      2.0
cdv_descriptors 'x1'     'x2'

interface,
direct
analysis_driver = 'rosenbrock‘

responses,
num_objective_functions = 1             
no_gradients
no_hessians

>>>>> Running Single Method Strategy.

ANOVA Table for Factor (Variable) 1
Source of                          Sum of          Mean Sum
Variation              DoF       Squares       of Squares       Fdata                 p-value
Between Groups       6   8.41566e+06    1.40261e+06   4.80464e+00     1.27778e-03
Within Groups        42   1.22610e+07    2.91929e+05
Total                       48   2.06767e+07

ANOVA Table for Factor (Variable) 2
Source of                            Sum of          Mean Sum
Variation               DoF       Squares        of Squares     Fdata             p-value
Between Groups        6   6.20553e+06    1.03425e+06   3.00175e+00   2.66272e-02
Within Groups         42   1.44711e+07    3.44551e+05
Total                        48   2.06767e+07
<<<<< Single Method Strategy completed.
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Orthogonal Arrays
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Main Effects Plot (data means) for DispMax

Source DF SS MS F P  
L1 2 8430 4215 4.49 0.013  

Error 132 123922 939  
Total 134 132352  

    Individual 95% CIs for Mean Based on Pooled 
StdDev=30.64 

Level N Mean StdDev   +---------+---------+---------+--------- 

15 45 -121.83 31.06                      (--------*--------) 

20 45 -133.56 31.02          (--------*--------) 

25 45 -141.03 29.82   (--------*--------) 

      +---------+---------+---------+--------- 
-150       -140        -130       -120 
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