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DAKOTA Training
 

Uncertainty Quantification (UQ) 
http://www.cs.sandia.gov/dakota

Learning outcomes:
• Understand terminology, goals, and applications of UQ methods
• Use DAKOTA’s

 

workhorse sampling method (LHS) to compute 
statistics and probability distributions with the Rosenbrock

 

function
• Differentiate reliability methods and stochastic expansion methods; 

run studies demonstrating benefit over LHS
• Epistemic uncertainty: understand DAKOTA approaches for lack-of-

 
knowledge uncertainty

SAND 2009-0511P

http://www.cs.sandia.gov/dakota
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The following are essential to support risk-informed decision making using 
modeling and simulation:

– Predictive simulations: verified and validated for application of interest
– Quantified uncertainties: the effect of random variability is fully understood

Formal DOE process for Quantification of Margins and Uncertainties (QMU): 
process of quantifying the impact of uncertainties in the decision context
Uncertainty Quantification
Critical component of QMU: credible M&S capability for stockpile stewardship
Two categories of uncertainty:

– Aleatory/irreducible: inherent variability with sufficient data probabilistic models
– Epistemic/reducible: uncertainty from lack of knowledge nonprobabilistic models
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d
Uncertainty applications: penetration, joint mechanics, abnormal environments, shock physics, …

Risk-informed Decision
 Making, QMU, and UQ



Sampling

Output 
DistributionsN samples of X

Measure 1

Measure 2

Input  
Distributions

N realizations of X

• Assume distributions on the uncertain input values, repeatedly sample 
from those distributions and run the model with the sampled values; 
yields corresponding distributions of the outputs

• Considerable work has led to more efficient Monte Carlo sampling

 
methods, including stratified sampling (Latin hypercube sampling) or 
quasi-Monte Carlo sampling which spread the samples over the space.

• Sampling is not the most efficient UQ method, but is easy to implement 
and transparent in terms of tracing sample realizations through multiple 
codes for complex UQ studies.
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Latin Hypercube Sampling

• Early work by McKay and Conover
• Restricted pairing by Iman
• Monte Carlo (MC) sampling
• LHS is stratified random sampling among equal probability bins for all 1-D 

projections of an n-dimensional set of samples.
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Example Input/Output: Sampling

Sampling Input (examples/tutorial/dakota_rosenbrock_nond.in) Sampling Output

strategy,
single_method
graphics
tabular_graphics_data

method,
nond_sampling
samples = 200 seed = 17
sample_type random
response_levels = 100.0

model,
single

variables,
uniform_uncertain = 2
lower_bounds -2.0  -2.0
upper_bounds 2.0   2.0
descriptor s        'x1'  'x2'

interface,
direct
analysis_driver = 'rosenbrock‘

responses,
num_response_functions = 1             
no_gradients
no_hessians

Statistics based on 200 samples:

Moments for each response function:
response_fn_1:  Mean = 4.43855e+02  Std. Dev. = 5.88920e+02  Coeff. of 
Variation = 1.32683e+00

95% confidence intervals for each response function:
response_fn_1:  Mean = ( 3.61736e+02, 5.25973e+02 ), Std Dev = ( 5.36308e+02, 
6.53068e+02 )

Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:

Response Level      Probability Level  Reliability Index  General Rel Index
-------------- ----------------- ----------------- -----------------

1.0000000000e+02   3.7000000000e-01

Simple Correlation Matrix among all inputs and outputs:
x1           x2 response_fn_1 

x1  1.00000e+00 
x2 -4.33667e-03  1.00000e+00 

response_fn_1  6.45646e-02 -4.81363e-01  1.00000e+00 

Partial Correlation Matrix between input and output:
response_fn_1 

x1  7.12791e-02 
x2 -4.82094e-01 



Exercise: DAKOTA Monte Carlo

• Examine the input file
examples/tutorial/dakota_rosenbrock_nond.in

• Run the problem:
>> dakota –i dakota_rosenbrock_nond.in –o this.out

• Look at output files this.out and dakota_tabular.dat

• Now edit the input file
– change sampling_type random to sampling_type lhs

– change uniform_uncertain to normal_uncertain, and 
lower_bounds to

 

means = 0. 0., upper_bounds to

 
std_deviations = 1.0 1.0

• Can change the seed and the number of samples to see 
how the outputs (mean, std deviation, correlations) change 
as well

User’s Manual Section 2.4.9



Example Postprocessing
 

of Samples



Latin Hypercube Sampling

• LHS allows the following distributions in DAKOTA:
– Uniform
– Loguniform
– Normal (bounded)
– Lognormal (bounded)
– Triangular
– Exponential
– Beta
– Gamma
– Weibull
– Frechet

 

–

 

Extreme value
– Gumbel

 

–

 

Extreme value 
– Histogram –

 

bin values or point pairs
– Interval –

 

use only in epistemic analysis
• There is a standalone LHS driver in Dakota/bin/lhsdrv
• Use this if you only want to generate samples



Recipe for a DAKOTA 
Sampling Study

• Define parameter ranges and/or probability distributions.

• Use the Latin hypercube sampling method to generate 
Order(N

 

to N^2) samples of the x-values.
– For a good estimate of mean response, 30-50 samples will likely suffice
– For a good estimate of variance, 200-300 samples will likely suffice
– One rule of thumb is: ~10—30 samples for each N (# samples =  10*N or 30*N)
– Another is: # samples = 1/3 of simulation run budget, saving the

 

other 2/3 for 
follow-on studies

• Examine the f-value correlation data and basic statistical data generated 
by DAKOTA.

– These correlations are the “global”

 

linear trends in the f-values.
– Often they are useful in finding a worst-case or best-case combination of x-

 
values.

• Perform a more detailed statistical analysis

• Only use DAKOTA’s f-value probability estimates if you have well- 
founded knowledge about the probability distributions on the x-values.



Sampling for
 Sensitivity Analysis vs. UQ

We only know the bounds, and not 
any probabilities on x1 and x2.

• Get correlations, min, max, and 
trend data

We assume some probability 
distributions on x1 and x2.

• Get correlations, min, max, and trend data
• Also can analyze the probability 

distribution of the output:  DAKOTA 
produces statistics on the f-values 
(e.g., Prob(f<4) = 0.049)



Uncertainty Quantification Algorithms @ SNL:
 New methods bridge robustness/efficiency gap

Production New Under dev. Planned Collabs.

Sampling LHS/MC, 
QMC/CVT

IS/AIS/MMAIS, 
Incremental LHS

Bootstrap, 
Jackknife

Gunzburger

Reliability 1st/2nd-order local: 
MV/MV2, x/u

 
AMV/AMV2/AMV+/

 
AMV2+, x/u

 

TANA, 
FORM/SORM

Global: EGRA Local: 
Renaud, 
Global: 
Mahadevan

Stochastic 
expansion

gPCE: sampling, 
pt colloc, quad, 
sparse grid. SC: 
quad, sparse grid

gPCE: 
tailored exp. 
gPCE/SC: 
anisotropic 
sparse grid

gPCE/SC: 
arbitrary 
input PDFs, 
adaptivity

Ghanem, 
Burkardt, 
Iaccarino, 
Maute, Xiu

Other 
probabilistic

Random fields/ 
stochastic proc.

Dimension 
reduction

Grigoriu, 
Youn

Epistemic Second-order 
probability

Dempster-Shafer 
evidence theory

Opt-based 
interval est.

Bayesian, 
Imprecise 
probability 

Higdon, 
Williams, 
Ferson

Metrics Importance factors, 
Partial correlations

Main effects, 
Variance-based 
decomposition

Stepwise 
regression

Storlie



UQ with Reliability Methods
Mean Value Method

Rough 
statistics

G(u)

MPP search methods
Reliability Index 
Approach (RIA)

Find min dist to G level curve
Used for fwd map z p/β

Performance Measure 
Approach (PMA)

Find min G at β radius
Used for inv map p/β z

Nataf x u:

Failure 
region



Reliability Algorithm Variations:
 First-Order Methods

AMV:
u-space AMV:

AMV+:
u-space AMV+:

FORM:  no linearization

Limit state linearizations

Integrations

1st-order:

Warm starting
When: AMV+ iteration increment, z/p/β level increment, or design variable change
What: linearization point & assoc. responses (AMV+) and MPP search initial guess

PMA Projection:RIA Projection:MPP initial guess benefits 
from projection since KKT 
conditions w.r.t. u

 

still 
satisfied for new level at 
previous optimum

MPP search algorithm
[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)

Eldred, M.S., Agarwal, H., Perez, V.M., Wojtkiewicz, S.F., Jr., and Renaud, J.E., Investigation of Reliability Method 
Formulations in DAKOTA/UQ, (to appear) Structure and Infrastructure Engineering, Taylor & Francis.



2nd-order local limit state approximations
• e.g., x-space AMV2+:

• Hessians may be full/FD/Quasi
• Quasi-Newton Hessians may be BFGS

 

or SR1

G(u)

Failure 
region

2nd-order integrations

curvature correction

Also, AIS, …

Multipoint limit state approximations
• e.g., TPEA, TANA:

Synergistic features:
Hessian data needed for 

SORM integration can enable

 
more rapid MPP convergence

[QN] Hessian data accumulated during 
MPP search can enable more accurate 
probability estimates

Reliability Algorithm Variations:
 Second-Order Methods

Eldred, M.S. and Bichon, B.J., Second-Order Reliability Formulations in DAKOTA/UQ, (in review) 
Structure and Infrastructure Engineering, special issue on uncertainty in aerospace systems, Taylor & Francis.



Reliability Algorithm Variations:
 Sample Results

Analytic benchmark test problems: lognormal ratio, short column, cantilever

Note: 2nd-order PMA with prescribed p level is harder 
problem requires β(p) update/inversion

43 z levels 43 p levels



Local Reliability Example

• Compare sampling methods to local reliability 
methods (modify dakota_rosenbrock_nond.in

 
or 

see examples/methods/dakota_uq_reliability.in)



Example Input/Output: Reliability

Reliability Input (examples/methods/dakota_uq_reliability.in)

Reliability Output

strategy,
single_method graphics

method, 
nond_local_reliability
mpp_search no_approx
response_levels = .4 .5 .55 .6 .65 .7  .75 .8  .85 

.9 1. 1.05 1.15 1.2 1.25 1.3 1.35 1.4 1.5 1.55 1.6 1.65 
1.7 1.75

variables, 
lognormal_uncertain = 2 

means             =  1.  1 
std_deviations =  0.5 0.5
descriptors       =  'TF1ln'   'TF2ln' 
uncertain_correlation_matrix =      1   0.3

0.3  1 

interface, 
system asynch 
analysis_driver = 'log_ratio' 

responses, 
num_response_functions = 1 
numerical_gradients 

method_source dakota 
interval_type central 
fd_gradient_step_size = 1.e-4

<<<<< Iterator nond_local_reliability completed.
<<<<< Function evaluation summary: 657 total (561 new, 96 duplicate)
-----------------------------------------------------------------
Cumulative Distribution Function (CDF) for response_fn_1:

Response Level  Probability Level  Reliability Index  General Rel Index
-------------- ----------------- ----------------- -----------------

4.0000000000e-01   4.7624085962e-02   1.6683404020e+00   1.6683404020e+00
5.0000000000e-01   1.0346525475e-01   1.2620507942e+00   1.2620507942e+00
5.5000000000e-01   1.3818404972e-01   1.0885143628e+00   1.0885143628e+00
6.0000000000e-01   1.7616275822e-01   9.3008801339e-01   9.3008801339e-01
6.5000000000e-01   2.1641741368e-01   7.8434989944e-01   7.8434989944e-01
7.0000000000e-01   2.5803428381e-01   6.4941748143e-01   6.4941748143e-01
7.5000000000e-01   3.0020938124e-01   5.2379840557e-01   5.2379840557e-01
8.0000000000e-01   3.4226491013e-01   4.0628960782e-01   4.0628960782e-01
8.5000000000e-01   3.8365052982e-01   2.9590705956e-01   2.9590705956e-01
9.0000000000e-01   4.2393548232e-01   1.9183562480e-01   1.9183562480e-01
1.0000000000e+00   5.0000000000e-01   4.7212046773e-12   4.7212177145e-12
...



New UQ Method:
 Efficient Global Reliability Analysis (EGRA)

True fn

GP surrogate

Expected 
Improvement

From Jones, Schonlau, Welch, 1998

• Address known failure modes of local reliability methods:
–Nonsmooth: fail to converge to an MPP
–Multimodal: only locate one of several MPPs
–Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP

• Based on EGO (surrogate-based global opt.), which exploits special features of GPs
–Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
–Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)



New UQ Method:
 Efficient Global Reliability Analysis (EGRA)

• Address known failure modes of local reliability methods:
–Nonsmooth: fail to converge to an MPP
–Multimodal: only locate one of several MPPs
–Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP

• Based on EGO (surrogate-based global opt.), which exploits special features of GPs
–Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
–Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)

Accurate and efficient global estimation of failure surfaces



EGRA (cont.):
 Benchmark performance

CDF Comparison

MV

FORM

PCE(2) LHS

EGRA

Multimodal Test

Rosenbrock Test

+

+

Accuracy similar to exhaustive sampling at cost similar to local

 

reliability assessment



Generalized Polynomial Chaos Expansions

Approximate response w/ spectral proj. using orthogonal polynomial basis fns

e.g. using

• Nonintrusive: estimate αj using sampling (expectation), pt collocation (regression), 
tensor-product quadrature or Smolyak sparse grids (numerical integration)

Wiener-Askey

 

Generalized PCE
• Tailor basis: optimal basis selection leads to exponential conv rates

• Tailor expansion order/range: p/k-adaptivity based on PCE error estimation
– Dimension p-refinement: anisotropic quadrature & Smolyak sparse grids
– Dimension k-refinement: discretization of random domain



Generalized PCE (cont.): 
Benchmark performance

Nonoptimal basis: 
Hermite

 

PCE for lognormals converges super-algebraically CDF

Optimal basis: 
Askey

 

PCE for Rosenbrock

 

is 
exact with 4th

 

order expansion

CDF



Stochastic Collocation

Instead of estimating coeffs for known basis fns, form interpolants for known coeffs

Key is use of same quadrature or sparse grid points/weights from the orthogonal 
polynomials for specified input PDFs same exponential convergence rates

Advantages relative to PCE: Simpler (no expansion order), adapts to integration pt set 
(doesn’t over-/under-integrate expansion), easy moment estimation, no intrusive variant

Disadvantages relative to PCE: Formation of interpolant

 

(for CDF sampling) requires 
structured data sets: quadrature/sparse grid (only); approx. error not orthogonal to basis



PCE Example

• Compare stochastic expansion methods to other 
UQ methods considered thus far 
(examples/methods/dakota_pce.in)



Example Input/Output: PCE

PCE Input (examples/methods/dakota_pce.in) PCE Output

strategy,
single_method

method, 
nond_polynomial_chaos 
expansion_order = 4 2    
quadrature_order = 5 3    
samples = 10000   
seed    = 12347   
response_levels = 
.1 1. 50. 100.    
500. 1000. 

variables, 
uniform_uncertain = 2 
lower_bounds = -2.  -2. 
upper_bounds =  2.   2. 
descriptors       = 'x1' 'x2'

interface, 
direct 
analysis_driver = 'rosenbrock' 

responses, 
num_response_functions = 1 
no_gradients 
no_hessians

<<<<< Function evaluation summary: 15 total (15 new, 0 duplicate)
Polynomial Chaos coefficients for response_fn_1:

coefficient   u1   u2
----------- ---- ----

4.5566666667e+02   P0   P0
-4.0000000000e+00   P1   P0
9.1695238095e+02   P2   P0

...
Statistics derived analytically from polynomial expansion:
Moments for each response function:
response_fn_1:  Mean = 4.5566666667e+02  Std. Dev. = 6.0656024184e+02  Coeff. 
of Variation = 1.3311490311e+00

Sensitivities for each response function evaluated at uncertain variable means:
response_fn_1:   [ -2.0000000000e+00  2.4505397711e-13 ]

Statistics based on 10000 samples performed on polynomial expansion:
Probabilities for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:

Response Level  Probability Level  Reliability Index  General Rel Index
-------------- ----------------- ----------------- -----------------

1.0000000000e-01   1.9000000000e-03
1.0000000000e+00   1.3600000000e-02
5.0000000000e+01   2.4390000000e-01 ...



Epistemic UQ
Second-order probability

– Two levels: distributions/intervals on 
distribution parameters

– Outer level can be epistemic (e.g., interval)
– Inner level can be aleatory (probability distrs)
– Strong regulatory history (NRC, WIPP).

Dempster-Shafer theory of evidence
– Basic probability assignment (interval-based)
– Solve opt. problems (currently sampling-based) 

to compute belief/plausibility for output intervals



Second-order Probability
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→ 50 CDF traces

each discrete 
(empirical) 
CDF: 100 
inner loop 
samples

• For each outer loop sample of epistemic (interval) variables, run 
an inner loop UQ study over aleatory

 

(probability) variables

“Envelope” of CDF traces represents response epistemic uncertainty 



Second-order Probability

Variable Epistemic Mean Distribution 
L [0.98, 1.02] m Normal(epistemic mean, 0.01) m
P [90,110] N Normal(epistemic mean, 5) N 
E [41.4,96,6] GPa Normal(epistemic mean, 13.8) GPa

 

 
Second-order Probability
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QMU Example
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QMU Example

• Typical standard case: 
– Create N samples on inputs, run code N times, 

generate a CDF of output metric
– Calculate M, U, and CF based on the CDF and the 

threshold
• Other cases:

– Uncertainty in both response and threshold
– Intervals on both response and threshold
– Interval bounds on threshold, evidence theory or 

probability representation of response
– Evidence theory or probabilistic representation of 

both response and threshold



QMU Example



Example Input:  Second-Order Probability

PCE Input (examples/methods/dakota_uq_cantilever_2nd_order.in)

method, 
id_method = 'EPISTEMIC' 
model_pointer = 'EPIST_M' 
nond_sampling samples = 50 seed = 12347

model, 
id_model = 'EPIST_M' 
nested 
variables_pointer = 'EPIST_V' 
sub_method_pointer = 'ALEATORY' 
responses_pointer = 'EPIST_R' 
primary_variable_mapping = 'X'    'Y' 
secondary_variable_mapping = 'mean' 'mean' 
primary_response_mapping = 1. 0. 0. 0. 0. 0. 0. 0. 

0. 0. 0. 0. 1. 0. 0. 0
0. 0. 0. 0. 0. 0. 0. 1. 

variables, 
id_variables = 'EPIST_V' 
interval_uncertain =2                           
num_intervals = 1 1                       
interval_probs = 1.0 1.0 
interval_bounds = 400. 600. 800. 1200.    
descriptors       'X_mean' 'Y_mean'       

responses, 
id_responses = 'EPIST_R' 
num_response_functions = 3 
response_descriptors = 'mean_wt' 'ccdf_beta_s' 'ccdf_beta_d'

epistemic 
sampling

aleatory 
sampling

simulation



Example Input:  Second-Order Probability

PCE Input (examples/methods/dakota_uq_cantilever_2nd_order.in)

method, 
id_method = 'ALEATORY' 
model_pointer = 'ALEAT_M' 
nond_local_reliability 

mpp_search no_approx 
num_response_levels = 0 1 1 
response_levels = 0.0 0.0 
compute reliabilities  complementary distribution 

model, 
id_model = 'ALEAT_M' 
single 
variables_pointer = 'ALEAT_V' 
interface_pointer = 'ALEAT_I' 
responses_pointer = 'ALEAT_R' 

variables, 
id_variables = 'ALEAT_V' 
continuous_design = 2 
initial_point 2.4522 3.8826 
descriptors'beam_width' 'beam_thickness' 

normal_uncertain = 4 
means             =  40000. 29.E+6 500. 1000. 
std_deviations =  2000. 1.45E+6 100. 100. 
descriptors       =  'R' 'E' 'X' 'Y' 

responses, 
id_responses = 'ALEAT_R' 
num_response_functions = 3 
response_descriptors = 'weight' 'stress' 'displ'

epistemic 
sampling

aleatory 
UQ

simulation



Example Output:  Second-Order Probability

PCE Input (examples/methods/dakota_uq_cantilever_2nd_order.in)

<<<<< Iterator nond_sampling completed.
<<<<< Function evaluation summary (ALEAT_I): 971 total (971 new, 0 duplicate)

Statistics based on 50 samples:

Min and Max values for each response function:
mean_wt:  Min = 9.5209117200e+00  Max = 9.5209117200e+00
ccdf_beta_s:  Min = 1.8001336086e+00  Max = 4.0744019409e+00
ccdf_beta_d:  Min = 1.9403177486e+00  Max = 3.7628144053e+00

Simple Correlation Matrix between input and output:
mean_wt ccdf_beta_s ccdf_beta_d

X_mean 9.40220e-16 -6.38145e-01 -9.14016e-01
Y_mean 1.38778e-15 -7.93481e-01 -4.39133e-01
….

epistemic 
sampling

aleatory 
UQ

simulation



UQ Method Comparison
 UQ Method 
Characteristics 

Sampling Analytic  
Reliability  

Polynomial  
Chaos 

Dempster-
Shafer 

Second- order 
Probability 

Inputs specified 
by probability 
distribution 

YES 
Wide range of 
distributions 

YES 
Can handle 
many common 
distributions 

YES, Only 
Gaussian 
distributions for 
many cases 

NO No for outer 
loop; yes for 
inner 

Correlations 
amongst inputs 

YES In some cases YES NO No for outer 
loop; yes for 
inner 

Number of 
samples required 
for M uncertain 
inputs 

(10-30) * M 
Note: the 
number of 
samples 
depends on the 
statistics of the 
output 
distribution 
being resolved. 

No samples 
needed; number 
of function 
evaluations 
depends on the 
problem 
formulation and 
type of 
optimization 
used 

(10-20)*M to be 
able to solve for 
coefficients 

100K- 1Mill. 
Often ~100- 
1000 LHS 
samples are 
taken to 
construct a 
surrogate, and 
the surrogate is 
sampled millions 
of times 

50-100 in outer 
loop * 
(10-20)*M in 
inner loop 

Outputs Output 
distribution 
(CDF) with 
moments 

Probability of 
failure for a 
given response 
level 

Functional form 
of output:  
Y=PCE(X).  
From this, one 
can calculate 
statistics of 
interest 

Cumulative 
distribution 
function for 
plausibility and 
belief 

Ensembles of 
CDFs; lower and 
upper bounds on 
possible CDF 
given epistemic 
uncertainty 

 



Extra Slides

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy under contract DE-AC04-94AL85000.



More Detail: 
Uncertainty Quantification Methods

• Latin Hypercube sampling
• Analytic reliability methods
• Polynomial chaos expansions
• Dempster-Shafer theory of evidence
• “Second-order”

 
probability analysis

• Aleatory
– Inherent variability (e.g., in a population)
– Irreducible uncertainty –

 

can’t reduce it by further knowledge
• Epistemic 

– Subjective uncertainty
– Related to what we don’t know
– Reducible:  If you had more data or more information, you 

could make your uncertainty estimation more precise



Introduction
Uncertainties/variabilities

 

must be properly modeled in order to quantify 
risk and design systems that are robust and reliable

Uncertainty can be categorized to be one of two different types:
– Aleatory/irreducible: inherent variability with sufficient data probabilistic models
– Epistemic/reducible: uncertainty from lack of knowledge nonprobabilistic models

We use a UQ-based approach to optimization under uncertainty (OUU)

– safety factors, multiple operating conditions, or local sensitivities are insufficient
– focus is simulation-based engineering apps: large-scale PDE-based, transient, nonlinear, 

implicit (distinct from chance-constrained stochastic programming –

 

often linear/explicit)
– tailor OUU methods to strengths of different UQ approaches

OUU methods encompass both:
– design for robustness (moment statistics: mean, variance)
– design for reliability (tail statistics: probability of failure)

Harder problem

Harder problem

PDE
Simulation

Input
Random
Variables

Output
Metric
Statistics



Background on V&V/UQ 

• Verification
– Are you solving the equations correctly?
– Code verification:

 

SQE, especially unit/regression/verification testing
• Algorithms of interest: 

method of manufactured solutions
– Solution verification:

 

spatial/temporal/iterative convergence of results
• Algorithms of interest: Richardson extrapolation,

 
Finite element error estimation (ZZ, QOI)

• Validation
– Are you solving the correct equations?

Assessment of computational models for intended application domains
– Compare [simulation + sim. uncertainty] vs. [experimental + data uncertainty]
– Validation is hierarchical: material tests components subsys sys
– Validation is targeted: models are validated for particular apps in particular regimes
– UQ is an enabling tool for validation

• SNL/LANL/LLNL have large V&V programs as part of ASC
– QMU initiative for decision support: ratio of margin/uncertainty

 

should be > 1



Motivations:
– Surrogates: Data fit, spanning ROM
– UQ

Types:
– Monte Carlo: basic random sampling
– Pseudo Monte Carlo: Latin Hypercube Sampling 

(LHS) is a stratified, structured sampling method 
that picks random samples from equal probability 
bins for all 1-D projections. 

– Quasi Monte Carlo:

 

deterministic sequences 
constructed to uniformly cover a unit hypercube 
with low discrepancy. 
E.g., Halton, Hammersley, Sobol

– Centroidal Voronoi Tesselation (CVT): generates 
nearly uniform spacing over arbitrarily shaped 
parameter spaces; originally developed for 
“meshless”

 

mechanics methods.
– (Multimodal, Adaptive) Importance Sampling: 

generates samples with recentered

 

density to 
emphasize areas of importance (i.e., tails)

Associated Tools: 
– Volumetric quality, Latinization
– Correlations, variance-based decomposition

100 CVT Samples in 2-D
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RBDO Algorithms

Bi-level RBDO
• Constrain RIA z p/β result
• Constrain PMA p/β z result

RIA 
RBDO

PMA 
RBDO

KKT
of MPP

Unilevel

 

RBDO:
• All at once: apply KKT conditions of 

MPP search as equality constraints
• Opt. increases in scale (d,u)
• Requires 2nd-order info for 

derivatives of 1st-order KKT

Fully analytic Bi-level RBDO
• Analytic reliability sensitivities

 

avoid 
numerical differencing at design level

(1st order)

If d = distr param, then expand

1st-order 
(also 2nd-order w/ QN)

Sequential/Surrogate-based RBDO:
• Break nesting: iterate between opt & UQ until target is met.

 
Trust-region surrogate-based approach is non-heuristic.



Shape Optimization of Compliant MEMS 

• MEMS subject to substantial variabilities

 

& lack historical knowledge base
• Sources of uncertainty

– Material properties, manufactured geometries, residual stresses
– Data can be obtained aleatoric uncertainty, probabilistic approaches

• Resulting part yields can be low or have poor cycle durability
Solution-Verified Reliability Analysis & Design of MEMS 
• Account for both manufacturing uncertainties and simulation errors in MEMS design
• Integrate UQ/RBDO (DAKOTA),

 

ZZ/QOI error est

 

(Coda),

 

adapt (SIERRA),

 

nonlin

 

mech

 

(Aria) MESA
• Goals:

 

On-line soln

 

verification project UQ/OUU results to fully converged mesh;
Achieve prescribed reliability; Minimize sensitivity to uncertainties (robustness)

Bi-stable MEMS Switch

ΕCDF

z

Error estimates 
result in CDF shift

p(Fmin <z)

Error-corrected: EE as analysis correction factors
Error-informed: EE as indicators for uniform/adaptive refinement (tight tols: eliminate correction)

Combined: control error levels (loose tols: assure correction accuracy) & use correction factors



Bi-Stable Switch: Problem Formulation

13 design vars: Wi , Li , θi
2 random vars:

reliable + robust

μ)

μ)
μ)

μ)

)



Results:
 Solution-Verified Reliability Analysis and Design

Conclusions: UQ/OUU with error corrected/informed approaches can be:
more accurate: controlling/correcting errors leads to higher confidence in UQ/RBDO results
less expensive: Linear800+EE analysis above < 10% cost of fully converged reference
more reliable: on-line approach accounts for any parameter dependence (esp. shape vars)
more convenient: can eliminate need for manual a priori convergence studies

Reliability analysis: compute error-corrected CDFs and assess accuracy/efficiency

RBDO: carry best fwd to design switch for max robustness s.t. reliability constraint

Reliability constraint: β >2

Max Fmin (10x robustness) 



Adding Samples

• The Halton

 

Quasi Monte Carlo sampling method allows you 
to add one sample at a time

• LHS does not:  As you go from 50 to 51 samples, 51 
samples requires a restratification

 

of the input space to 51 
bins, and new samples

• However, we have an “incremental”

 

LHS sampling 
capability

• Using this approach, we can double the number of LHS 
samples each time, maintaining both the correlation 
structure and the proper stratification

• Use incremental LHS to go from 20 to 40 to 80 samples, etc. 
• Must have a restart file with the previous run available
• Syntax: 

– samples = 20 
– seed = 234 
– sample_type

 

incremental_lhs

 

previous_samples

 

= 10



Quasi Monte Carlo Methods

• Quasi-Monte Carlo sequences are deterministic 
sequences determined by a series of prime 
bases.  They are designed to produce uniform 
random numbers on the interval [0,1]. 

• E.g., Halton
 

sequence: 
Sample Number Base 2 Base 3 Base 5 Base 7

1 0.5000 0.3333 0.2000 0.1429
2 0.2500 0.6667 0.4000 0.2857
3 0.7500 0.1111 0.6000 0.4286
4 0.1250 0.4444 0.8000 0.5714
5 0.6250 0.7778 0.0400 0.7143
6 0.3750 0.2222 0.2400 0.8571
7 0.8750 0.5556 0.4400 0.0204
8 0.0625 0.8889 0.6400 0.1633
9 0.5625 0.0370 0.8400 0.3061
10 0.3125 0.3704 0.0800 0.4490



Example:  Halton
 

Set

Base 2 and Base 3
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Quasi Monte Carlo Methods

• The quasi-Monte Carlo (QMC) and Centroidal

 

Voronoi

 

Tesselation

 
(CVT) methods are designed with the goal of low discrepancy. 

• Discrepancy refers to the nonuniformity

 

of the sample points 
within the hypercube. 

• Low discrepancy sequences tend to cover the unit hypercube 
reasonably uniformly. 

• CVT does very well volumetrically, however the lower-dimension 
(such as 1-D) projections of CVT can have high discrepancy.

• CVT developed as part of unstructured meshing techniques for 
irregular domains 

• Centroidal

 

Voronoi

 

diagrams subdivide arbitrarily shaped 
domains into arbitrary numbers of nearly uniform subvolumes

• Sample points returned are the centers of the Voronoi

 

region
• CVT good choice for high dimensional sampling



CVT Performance

Placement of X1, X2 in one CVT sample
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•This clustering may contribute to the method performing relatively well over 
all the space but poorly at the edges, which the RMSE metric emphasizes.  

•Note that there is an approach which “latinizes” or stratifies the CVT samples 
to give them better 1-D marginal densities, which may improve their potential 
use in response surface modeling. 



Epistemic Uncertainty Quantification

• Epistemic uncertainty refers to the situation where one does not

 

know 
enough to specify a probability distribution on a variable

• Sometimes it is referred to as subjective, reducible, or lack of

 

knowledge 
uncertainty

• Initial implementation in DAKOTA uses Dempster-Shafer belief structures. 
For each uncertain input variable, one specifies “basic probability 
assignment”

 

for each potential interval where this variable may exist.
• Intervals may be contiguous, overlapping, or have “gaps”

BPA=0.5 BPA=0.2
BPA=0.3 Variable 1

BPA=0.5 BPA=0.2BPA=0.3
Variable 2



Epistemic Uncertainty Quantification

• Look at various combinations of intervals.  In each joint interval “box”, 
one needs to find the maximum and minimum value in that box (by 
sampling or optimization)

• Belief is a lower bound on the probability that is consistent with the 
evidence

• Plausibility is the upper bound on the probability that is consistent with 
the evidence

• Order these beliefs and plausibility to get CDFs

Variable 1

Variable 2

.5 .3 .2

0.1

0.2

0.7

Original LHS samples used 
To generate a surrogate

Million sample points 
generated from the 
surrogate, used to 
determine the max and 
min in each “cell” to 
calculate plausibility and 
belief



Dempster-Shafer Example

Variable Intervals BPA

L [0.97, 1.03] m 1.0

P [85,115] N 1.0

E [27.6,110.4]GPa 1.0

Table 3a. Epistemic Variables for the Cantilever Beam Problem, Example 1

Variable Intervals BPA

L [0.97, 0.98] [0.98, 1.02] [1.02,1.03] m 0.25, 0.5, 0.25

P [85,90] [90,110] [110,115] N 0.25, 0.5, 0.25

E [27.6,41.4] [41.4, 96.6] [96.6,110.4]GPa 0.25, 0.5, 0.25

Table 3b. Epistemic Variables for the Cantilever Beam Problem, Example 2



D-S Epistemic Uncertainty Results
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