Zoltan: A Dynamic Load-Balancing Library for Parallel Applications

We have developed Zoltan, a general-purpose tool for dynamic load balancing in parallel applications. Zoltan redistributes work among processors in applications whose work loads change as computation proceeds, such as adaptive numerical methods and multi-phase simulations. Building on the expertise developed in Chaco (Sandia’s highly successful static graph-partitioning tool), Zoltan incorporates fast, parallel partitioning algorithms with an easy-to-use object-oriented interface. Zoltan solves many of the problems that arise in typical approaches to dynamic load balancing in parallel applications. One such problem is that an application typically includes only a single load-balancing algorithm, with close coupling of the algorithm's and application's data structures. This approach impedes research into dynamic load balancing and makes innovations difficult to transfer to applications. For example, it is unlikely the best possible algorithm is implemented in the application, but comparing algorithms is impractical, as implementing several methods per application is time consuming. Moreover, new algorithms cannot be used easily by other applications, as they depend strongly upon the original application's data structures.

To address these issues, Zoltan is designed to be flexible and extensible, supporting a wide range of applications, algorithms, and architectures. Its object-oriented interface separates the load-balancing data structures from those of an application, allowing many different applications to use Zoltan. Both graph-based and geometric partitioning algorithms are supported, and the clean design allows new algorithms to be added easily. With this tool-kit approach, researchers can use Zoltan as a test-bed for new partitioning algorithms, and application developers can quickly access innovations in load balancing and experiment with many different methods to find those best suited to their applications.

Zoltan is currently being deployed in a number of Sandia's applications (including SIERRA, ALEGRA, and MPSalsa) and is available to external users through no-cost licenses from Sandia. Collaborators include William Mitchell (NIST), and Vipin Kumar and George Karypis (Univ. of Minnesota). For more information, please see http://www.cs.sandia.gov/~kddevin/Zoltan_html/Zoltan.html or contact Karen Devine (kddevin@cs.sandia.gov, 505-845-7585) or Bruce Hendrickson, (bahendr@cs.sandia.gov, 505-845-7599).

Reactor wall: Heat transfer only; 1552 nodes; Weight/node ≈ 0.006

Reactor volume:

Reacting surface:
Fluid flow, heat transfer,

Fluid flow, heat transfer,

mass transfer with 22 species

mass transfer with 22 species

1976 nodes; Weight/node ≈ 0.05

+ SURFACE REACTIONS

61 nodes; Weight/node ≈ 9.0

Total Dynamic Load-Balancing Time

Weighted RCB; 50 ASCI Red processors

0.28 seconds

 RCB algorithm
0.17 seconds

 Zoltan overhead
0.11 seconds

Total Data Migration Time

1.14 seconds

 Migrate nodes, elements, faces using Zoltan
0.17 seconds

 Rebuild data structures in MPSalsa
0.97 seconds

Matrix fill: Before balancing

82.22 seconds

Matrix fill: After balancing
(53% reduction)
38.10 seconds

This example demonstrates the low overhead incurred when using Zoltan in MPSalsa, a MICS-funded unstructured finite element (FE) code for simulating chemically reacting flows. Load imbalance exists because different physics are simulated in different regions of a catalytic partial-oxidation reactor. Zoltan uses CPU times per FE node as weights in a recursive coordinate bisection (RCB) algorithm to compute a new decomposition. Zoltan performs all communication needed to move data from one processor to another in establishing the new decomposition, greatly simplifying data migration within MPSalsa. Zoltan’s total cost to redistribute work is only ~1.5 seconds; its new distribution yields a 44 second (53%) improvement in time per matrix fill. (K. Devine and A. Salinger)

