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Abstract

The capabilities of the variational multiscale (VMS) meadhare explored in the context of
turbulence control by applying VMS to the simulation of a plenopposition-control strategy for
turbulent channel-flow with the results compared to prioreDi Numerical Simulations (DNS)
and Large-Eddy Simulations (LES) based on the dynamic siHsgale model. In all cases, the
VMS method is found to be more efficient and more accurate thardynamic model and the
simplicity, accuracy, and generality of VMS makes it partaly attractive for turbulence control
investigations.
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Modifiers

x? y?z

turbulence Reynolds numb&e, = wu,d/v

time

time interval

velocity vectoru = {u, v, w}?
velocity component in the-direction
friction velocityu, = /7. /p
velocity component in thg-direction
velocity component in the-direction
coordinate vectoer = {z,y, 2}7
streamwise coordinate
wall-normal coordinate

sensing plan location in wall units
spanwise coordinate

state vectolU = {u,p}”

solution function space

velocity weighting-function

state weighting-function

test function space

wave length

channel half-height

length scale

boundary ofQ

kinematic viscosity

spatial domain

density

average wall shear-stress

large scales

small scales
unresolved scales
wall units

change in a quantity
root mean square
coordinate direction
transpose
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Introduction

This paper extends our research to develop improved metioodsmulation of turbulence
control using Large-Eddy Simulation (LES). The LES basedhmods presented here exploit the
promise of the variational multiscale model to improve tligciency of control formulations
applied to turbulent flows. Our prior work [1] has demon&dithat LES with the dynamic subgrid-
scale model is an effective tool for studying turbulencetamrof wall-bounded flows. However,
the well-known difficulties in extending the dynamic modeinhomogeneous flows limits appli-
cations to more complex turbulence control problems. Likewthe algebraic complexity of the
dynamic procedure makes application of gradient basednapitontrol strategies cumbersome.
Recently a new approach to LES called the Variational Mbtizle (VMS) method [2] has been
introduced that demonstrates results equal or superitretdynamic model for both equilibrium
and non-equilibrium turbulent channel flows [3]. In additithe VMS method can be readily ex-
tended to complex geometries (see [4] for one example)esioale separation is effected through
projection instead of spatial filtering as employed in triatial LES [2]. The resulting model equa-
tions are also very simple, making the approach attractvgfadient-based optimal control. In
this paper, we explore the viability of the VMS method to geas an efficient and accurate tool
in the context of turbulence control by applying VMS to theslation of a simple opposition
control strategy for turbulent channel flow with the resglisnpared to prior DNS and LES. The
objective of this research is to determine if the advantaf®MS reported for uncontrolled flows
also extend to controlled turbulent flows.

Although the potential of turbulence control to improve thexformance of aerospace appli-
cations is significant, turbulence control is a cutting-etechnology with a number of important
engineering challenges that must be overcome before pahctystems become viable. These
challenges are non-trivial and include such issues as maaidosses, actuator/sensor design,
weight, maintainability, and cost. Likewise, fundamemsales associated with the flow physics,
modeling, and control mechanisms are also in need of furdssarch. It is for these reasons that
simulation tools, such as the VMS methods discussed hezenesaded to evaluate and optimize
different control strategies long before committing thenmardware.

The paper begins with a brief review of opposition contrdlicieed by an introduction to the
VMS method. We briefly summarize the results from uncontdNVMS simulations along with
comparisons to DNS and the dynamic model in order to validatamplementation. Our VMS
implementation is then used to study opposition controbsgia range of Reynolds numbers and
comparisons are made to prior DNS and LES results.
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Review of Opposition Control

Opposition control (also called “out-of-phase” contral s conceptually simple feedback con-
trol strategy that introduces control in the form of disttidéd suction and blowing at the wall
surface in an attempt to oppose the motion of near-wall tertiustructures. The physical argu-
ment used to motivate this strategy is demonstrated in EigqurNear-wall turbulent structures
generally take the form of streamwise oriented counteatiag vortices (see e.g., [5-7]). By sens-
ing the vertical component of velocity at a sensing planatied a distancg,” from the wall and
using suction/blowing in opposition to the measured véypoine hopes to attenuate the motion of
turbulent structures thereby reducing the transport di mgmentum fluid toward the wall and re-
ducing drag. Doing so may also hamper the cycle of near-wdillence generation [8]. Evidence
to support this heuristic description of opposition cohissupplied by the LES flow visualization
shown in Figure 2. This figure highlights near-wall turbulstructures for both an uncontrolled
and opposition controlled flow ake, = 180 using an iso-surface of the second largest eigen-
value of the velocity gradient tensor which has been shovinretan effective indicator of coherent
vortical structures in turbulent shear flows [7]. Clearlg thumber of structures is reduced in the
controlled flow and a similar effect is seen in flow visualiaat from DNS [9], albeit with greater
fine-scale structure visible.

While the origin of opposition control is somewhat uncertdiO], the first simulations demon-
strating this method are those of [11] who used DNSat = 180 reporting about 20% drag
reduction when the sensing plane is locateg/at= 10. The more recent DNS by [9] shows that,
again forRe, = 180, the optimal sensing plane locationyis ~ 15 which gives about 25% drag
reduction. Both studies reveal that drag increases whecuotheol is set to counter motions too far
from the wall, say ay > 25[9,11]. These DNS studies serve to demonstrate the eféaetas of
opposition control as well as identify likely mechanismsdeag reduction when using opposition
control. In so doing, they spurred on a number of other ingasbns that built on the idea of oppo-
sition control in a variety of ways (see [1] for a review). larpcular, the experience gained from
opposition control has played an important role in intetipgethe effects of more complex control
strategies such as neural networks [12] and optimal cofB}! Unfortunately, most, if not all,
prior studies of opposition control and related contrahtgtgies have been performed at very low
turbulence Reynolds numberBe, < 200. Recently, the authors [1] have utilized LES with the
dynamic subgrid-scale model to explore the influence ofousceffects on opposition control of
low Reynolds number channel flows. This study revealed thidt the effectiveness and efficiency
of opposition control are reduced as Reynolds number iseseaWhile the dynamic model has
proven to be an accurate and efficient tool for exploringulehce control for wall bounded flows
using both opposition and optimal control strategies [+18}, the dynamic model does, however,
suffer from a number of disadvantages that limit its appiccato more complex flows. To ad-
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dress these limitations, this paper presents the first@gin of the variational multiscale (VMS)
method of turbulence modeling to turbulence control sirmoies. Before presenting results using
this new formulation, we first briefly review the VMS method.

Review of Variational Multiscale Method

The Variational Multiscale (VMS) method for Large-Eddy Silation (LES) was first de-
scribed by Hughes, Mazzei, and Jansen [2] and recenthfietatby Collis [17]. Following the
discussion in Collis [17], the strong form of the NavierI&te equations for incompressible flows
are

N(U)E{%+V-(u®u)+Vp—VAu}:{f}EF, )
V-u

wherew is the velocity vectorp is the pressure; is the kinematic viscosity (or, the inverse of the
Reynolds number if non-dimensionélis a body force and is volumetric source, ang denotes

the tensor produdtu ® v);; = u,v;. Equations (1) are solved subject to appropriate boundary
conditions and initial conditions.

The fixed spatial domain for the problem is denoted’bwith boundaryl’ = 0f). The time
interval of interest ig0, 7’| so that the space-time domainQs= €2 x [0, 7] with lateral boundary
P = I'x [0, T]. The state vectot] = {u, p}” is defined on the closure of the space-time don@ain
and is in the function spadé. Details regarding the appropriate function space fornmoessible
Navier—Stokes solutions can be found in [18, 19]

A variational form of the Navier—Stokes equations is cang&d by introducing another func-
tion spaceWV, of test functionsW = {w,r}? € W. The function spac&V is the same ap
except that the components W are zero anywhere that a Dirichlet boundary condition &spli
onU. The variational form of the equations are obtained by tgkine inner product of test func-
tionsW with (1) and integrating over the space-time dom&ywhere the inner product is defined
as

(t.go= [ 1-80Q @
This leads to the variational form of the Navier-Stokes ¢ignag,
BW.,U) = (W,N(U))q=(W,F)qg VWeW, 3)

whereB(W,U) is defined as

0_u
ot
+ (nV-u)g+ (w,n-(u®u)e + (w,pnle — (w,20Vu-n)p,  (4)

B(W,U) = < )Q — (Vw,u®@u)q — (V- -w,p)q + (Vw, 2vV°u)q
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V*u is the strain-rate tensor, i.€V°u);; = (u;; + u;;)/2), andn is the outward unit normal
vector on the boundarl. Integration by parts has been applied to the viscous, abiove and
pressure-gradient terms generating appropriate fluxelseosptatial boundaries.

The variational multiscale method is built around the idéa @riori scale separation where
we utilize a three-scale partition [17] that highlights tioée of unresolved scales. Thus, the large
scales are denoted B the small scales d, and the unresolved scalesldsso that the solution
and weighting function spaces are partitioned as

V=vyavaeV, W=WaWwaeW (5)

and the solution and weighting functions can be written as

U=U+U+U, W=W+W+W. (6)

As shown in Ref. [17] the exact equations for each scale rangé@lentified by the particular par-
tition of the weighting function that appears in the firsttgiboperatorB(W, U ) in equation (4).
Thus, the exact large, small, and unresolved equations\ar by

Large BW,U+U+U) = (W, F)q, (7)
Small BW,U+U+U) = (W, F)q, (8)
Unresolved BW,U+U+U)=(W,F)q. (9)

At this point, it is convenient to introduce definitions oftiReynolds-stress projection and
cross-stress projections [17]. The projection of the wilvesl Reynolds stress onto the large scales
is defined as

Rw,u) = (Vw,u®u)q — (w,n - (u®u))p. (20)

Likewise, the projection of the large/unresolved crosesstes onto the large scales is defined as
Cw,w,u)= Vo, u@u+u®tuU)qg— (W,n- (BRU+URT))p. (11)

With this notation, the equations for tiesolved scaleslenoted b)ITI = U + U, can be written
as L o
B(W,U) = (W, F)q+ R(w, @) + C(w,u,a) + R(w,6) + C(w, u, ). (12)

need t‘(,) model

Solving just this equation for the resolved scalvé@x‘( € ﬁ) requires that the terms depending on
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the unresolved scales be modeled. Thus, the modeled NSwdwes equations are
B(W.U) = (W, F)q+M(W,U)q+ MW ,U)q (13)

whereM and M denote the model terms acting on the large and small scalgsectively. Since
the goal of large eddy simulation is to accurately prediet ¢wolution of the largest scales of
motion, it is desirable that there be no direct model actingtle large-scales. Thus we set
MW, E)Q = 0 and it is argued in [17] that this is reasonable as long a®tisesufficient scale
separation between the large and unresolved scales i.dfi@esily large small-scale partition.
Results demonstrating the significance of the small-saatgion in enforcing adequate scale sep-
aration can be found in [20]. Conversely, the influence oluhiesolved scales on the small-scales
must be modeled and, following [2], we utilize a simple canstcoefficient Smagorinsky model

acting on the small-scales
M(W,U)q = (V°1,2(CsA)? [V*a| Vi) (14)

whereCy is the constant Smagorinsky coefficiefW,*u| is the norm of the small-scale strain-rate
tensor, and\ = (AzAyAz)'/? is a representative length scale for the small scales.

Since the large-scales have no direct model, when all scéle®otion fall within the large
partition, the exact solution (i.e. DNS) is obtained. Thaattire is missing from classical LES and
RANS methods. Likewise, at finite resolution when both laagel small scales are active, it is
likely that the large scales will be more accurate and thieigfied in recent studies [3, 20, 21]. In
summary, the VMS approach provides a number of advantageotver LES models including:

¢ the variational formulation provides a solid mathematfoaindation for turbulence model-
ing [2,4,17];

e the VMS approach, with an appropriate numerical methodddh be readily extended to
complex geometries — there are no commutativity or homageissues like those that arise
when using spatial filters (seeg.,[2, 22]);

e a constant coefficient Smagorinsky type model acting onlgroall scales has been shown
to be effective, even for wall bounded flows [3, 21];

e the modeled equations are considerably simpler then thandinsubgrid-scale model [23,
24] making calculations potentially more efficient.

We believe that these benefits may prove to be particulahyatde for simulation of turbulence
control systems which motivates our current applicatiovildfS to opposition control for turbulent
channel flow.
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Problem Formulation and Implementation

We now focus specifically on incompressible, fully-deveddpurbulent flow in a planar chan-
nel where the fluid motion is predicted using LES with a VMS melodh the following discussion
the coordinate system for the channel flowtig the streamwise directiomn, in the wall-normal
direction, and: in the spanwise direction. The flow in the streamwise andwsandirections is
assumed to be periodic with the box-size set to ensure thatitbulence is decorrelated.

VMS has been implemented in our existing LES flow solver tisasua hybrid Fourier-spectral
and finite-volume method [25, 26] which has been modified toefficiently on workstation class
computers and shared memory parallel computers [16]. Gha&inthe spanwise and streamwise
directions are homogeneous for planar channel flow, a deali&ourier-Galerkin method is the
natural choice. In the LES/DNS literature, spectral mesha@ also commonly used in the wall-
normal direction for channel flows, based on either Chebyfd or Legendre [28] polynomials.
In fact, the recent VMS study of Hughes et al. [3] utilized gkedre-Galerkin method in the wall-
normal direction. Typically these fully spectral methods €hannel flows treat the convective
terms explicitly in time to prevent the need to solve largengk non-linear systems of equations.
However, in turbulence control studies, the combinatiomofi-zero wall-normal velocity and
the highly refined meshes required in the near-wall regiad ke a stringent convective stability
constraint when using explicit time-advancement. It istfos reason that we use a conservative
second-order finite-volume method on a staggered grid with implicit Crank-Nicholson time-
advancement in the wall-normal direction that leads to dicient implementation which only
requires the solution of tri-diagonal systems of equatiolrs the homogeneous directions, an
explicit, third-order accurate Runge-Kutta method isizeitl and a fractional-step algorithm is
used to enforce incompressibility. See [16] for details.

Since we use a Fourier-spectral method #ndz based on a Galerkin variational formulation,
it is straightforward to apply the VMS scale separation iasth directions as described above.
However, since a finite-volume method is used in the walhrardirection, the application of
scale separation in that direction is inconvenient. Theeefin an approach we call planar VMS
(hereafter called PVMS), analogous to the common practiddtering only in the planes [23,
24], we apply scale separation only in the planes. Thus, thalsscales are defined through
variational projection of the Fourier basis only in the z) planes. An important parameter of
any VMS method is the choice of partition between large andlisscales. With a Fourier series
representation in the planes, our numerical solutionsttadéorm

N./2-1  N./2—1

Ux,t)= > Y Uy ts kg, ko)eitarthe?)

ke=—Ng/2 k.=—N./2
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where N, and N, are the number of Fourier modes in the resolved scales inttbanswise and
spanwise directions, respectively. The large/small pantis accomplished by defining the parti-
tions N, and N such that the large scales are

Ng/2—1 N./2—1
U.t)= ) Uy, t; by, k) e/ B the2)
ko=—Ngy/2 k,=—N./2

with all remaining scales in the small partition. In case®mthe same partition is usedarand
2 we defineN = N, = N.,.

Note that other applications of VMS to channel flows repoitetie literature, Hughest al.[3]
and Oberai and Hughes [21], used a Fourier-Galerkin methtietihomogeneous directions with a
Legendre-Galerkin method in the wall-normal directionfsat the VMS method could be applied
in all three coordinate directions. Their work demonssateat the VMS method results in high
quality solutions that are often superior to the dynamic ehodspecially for transient turbulent
flows. We reiterate that this approach is not convenientudstlence control simulations and we
show in the next section that our planar implementatiordgieésults similar in quality to the full
VMS method of Hughest al.[3].

Results

The domain sizes and grid resolutions used to validate @maplimplementation of VMS are
given in Table 1. Similarly, the domain sizes and grid reBohs for all PVYMS simulations used
in the control study are presented in Table 2. In both taltes,grid spacingg\z* and Az™
are computed based on the mesh prior to dealiasing whjle and Ay are they-resolution at
the wall and centerline of the channel, respectively. Thegmnsky coefficien’y; = 0.1 for
all PVMS simulations. All dynamic model results presentedehuse our implementation of the
dynamic subgrid-scale model in the same code [16] and stionlparameters for the dynamic
model are presented in Table 3. To distinguish simulatidribeasame Reynolds number with
varying parameters, we include a case number associateceach simulation (see Tables 2 and
3). For the same Reynolds number, increasing case numberaljgrmeans a higher resolution.
We choos@, the channel half height, as the reference length scaleard(r,,/p)'/? as reference
velocity scale, where,, is the average shear-stress on the walls. The referencee(@or) time-
scale is then /v, and the reference Reynolds numbeFRis. = u,0/v. In presenting results, we
sometimes report viscous time-units which are defined as tu? /v.

Appropriate partition selectionV) is vital for the success of VMS and, in particular, the parti-
tion must be commiserate with the assumptions made in dgriie VMS model equations. The
large-scale space is selected to sufficiently represemythamically important large scales in the
flow. We show in a companion work [20, 29] that for turbulenéhel flow, the large-scale space

9 0F40



must be sufficient to capture scales half the size of the &ypiear-wall streaks\( ~ 50 and
A~ 200). With the large-scale space set, the small scales arentiet=t by the resolution limit
and the small-scale space must provide sufficient scaleaépabetween the unresolved (sub-
grid) scales and the large scales. This minimizes the dinflaence of the unresolved scales on
the large scales which is an important assumption in degithe model equations for VMS [17].
We use this approach as a guide in selecting both the parbgowveen large and small scales and
the resolution limit. In the results that follow, we demaast the influence of both partition and
resolution on the quality of the simulations. The interdstader is directed to refs. [20, 29] for
details.

Uncontrolled Flow

We begin by presenting quantitative comparisons of lonepstatistics for fully-developed
turbulent channel-flow ake, = 180 using PVMS, the dynamic model, and DNS. All simulations
at this Reynolds number use the domain size, 2, 47/3) which matches that used by the full
VMS study of Hughet al. [3]. For PVMS, we use the same number of Fourier modes in the
streamwise and spanwise directions as Hugttesl. [3] However, initially the number of grid
points in the wall-normal direction is set to twice the numdid_egendre modes used by Huglets
al. [3] to account for our second-order method as opposed to $peictral discretization. This
increase in resolution was deemed sufficient based our xperience with the dynamic model
[1,16] for the same conditions and numerical method (we péstorm a resolution study below).
Thus, PVMS and dynamic model use a resolutiod®i 65 x 32 (see Table 1) while the DNS
calculation uses a resolution® x 129 x 96. Mean and rms velocity profiles for all three methods
are shown in Fig. 3 where the PVMS uses the partithor= 14. The PVMS mean-flow profile
in Fig. 3(@) is in excellent agreement with DNS (they cannot be dististyed at this scale), while
the dynamic model for the same resolution slightly over mtsdhe wall shear-stress. The rms
velocities, shown in Fig. 3(— d), for both PVYMS and the dynamic model are in good agreement
with unfiltered DNS.

Figure 4 shows the effect of reducing the wall-normal reotufrom 65 to 33 nodes demon-
strating that the mean-velocity profiles from PVMS are irssigre to the decrease in wall-normal
resolution. Also included in this figure are results from arse grid “DNS” computed at the
resolution32 x 65 x 32. This coarse “DNS” significantly over predicts the sheaesdrat the
wall demonstrating the need for a subgrid-scale model atrésolution. Figure 5 shows a similar
comparison for rms velocities, where, again, the PVMS satiohs are in good agreement with
the unfiltered DNS while the coarse “DNS” shows significantiai&on from the reference DNS.
In particular, the location of the peak in the streamwiseulence intensityu,.,s) is accurately
predicted by the PVMS simulations while the peak predictgeddmarse “DNS” is shifted towards
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the wall. Although we initially used a rather high wall-naahnesolution (65 grid points) to make
up for our use of a second-order method as compared to theap®eethod used by Hughet
al. [3], these results demonstrate that PVMS is relatively nsg&e to wall-normal resolution.
PVMS using the same resolution as Hugleesl. [3] (albeit with a second-order method i)
leads to results in good agreement with DNS.

Since the partition between large and small scales is anrapgparameter in VMS simula-
tions, Figures 6 and 7 shown the influence of small changdeipartition location for both mean
and rms velocity profiles. While the partitiqiVv) does influence the solution, minor departures
from the nominal partition do not lead to significant diffieces. In fact, these changes can be
partially offset by changes in the value @f (recall we have fixed’s; = 0.1) and this is explored
further in refs. [20, 29]. Simulations at higher frictionl@eity Reynolds numbers exhibit a similar
behavior (see [29]) and these observations are consistdnthese reported by Hughes al. [3]
and by Oberai and Hughes [21].

Moving on to higher Reynolds numbers, PVMS resultgat = 590 are now compared with
the dynamic model and DNS [30]. The partition for this Reylsohumber, using a resolution
of 72 x 149 x 72 is N = 26. The mean velocity-profile shown in Figuréd8 is in excellent
agreement with DNS, especially in the logarithmic regiorevehthe PVMS profile is virtually
indistinguishable from DNS while the dynamic model, at thme resolution, slightly over predicts
the wall shear. The rms statistics for both the dynamic madel PVMS (Figures @) — (d))
are in good agreement with the unfiltered DNS [30]. Note, thatdynamic model and PVMS
simulations use the same domain (see Tables 1) while the &S ai slightly larger domain of
size(2m, 2, 7). The approximate reduction in computational cost for PVM8ipared to the DNS
resolution of384 x 257 x 384 is a factor of nearly 50 times.

To explore the sensitivity of the PVMS resultsiter resolution, the resolution d&e, = 590 is
reduced ta4 x 149 x 64 while keeping the partition constant At = 26 (see Table 1). Figure 9
shows that the mean-velocity profile at the lower resoluigonrtually identical to the result at the
higher resolution. Similar results for the dynamic modé&dahown in figure 9) show that at both
resolutions the dynamic model over predicts the wall sls&gass, although it does improve with
increased resolution.

Overall, the PVMS results are in excellent quantitativesagrent with low-order statistics from
DNS at bothRe, = 180 and590 and are obtained at a fraction of the computational cost c5DN
PVMS consistently outperforms the dynamic Smagorinsky ehgiklding results in better agree-
ment with DNS at lower resolutions. In all cases, our plangylementation of VMS gives results
similar in quality to the full VMS implementation of Hughes &. [3]. However, by using fully
implicit time-advancement in the wall-normal directionyramplementation is better suited for
turbulence control research and we now apply this tool taukite an opposition control strategy.

110F40



Opposition Control

Results for opposition control are presented for fricti@hoeity Reynolds numbers 100, 180,
360, and 590. The quantitative agreement between DNS [@rdd Jthe dynamic model [1] for
drag reduction at these Reynolds numbers is excellent. r@ted drag histories from PVMS
simulations over this range of Reynolds numbers are predentFigures 10-13 along with the
corresponding sensing plane locatigns The optimal drag reduction and the corresponding
location of the sensing plane are estimated by passing @esfulsing the Matlab spline function
based on a not-a-knot end-condition) through the data showingure 14. The drag reduction
of 26% predicted by PVMS forRe, = 100 at a sensing plane location gf =~ 16 is in good
agreement with both DNS data obtained using a resolitidrx 65 x 42) and the dynamic model
[1]. The maximum drag reduction fdte, = 180 of approximately25% wheny! ~ 15 is also in
excellent agreement with DNS [9]. Similarly, the quantitatomparison of the PVMS predictions
at Re, = 360 and 590, seen in Figure 14, are in close correspondence with therestived
dynamic model simulations from our prior study [1]. The draduction predicted by PVMS for
opposition control are summarized in Table 4 along with tweasures used to evaluate the control
efficiency [1, 26]. In this tablePp is the power saved due to drag reducti®y,is the power input
by the control, and®,, is a more conservative estimate for power input by the cottiad does
not allow the flow to perform work on the control [26]. Notaltends in Table 4 include the shift
of the optimal sensing plane location corresponding to maxn drag-reduction closer to the wall
as Re, increases and the reduction in control efficiency, as meddoy the ratio of power saved
to power input, with increased Reynolds number. These sréiagle been predicted in our recent
study using the dynamic model [1] and are verified here us\ig $.

The mean and rms statistics of the controlled flowRat = 180 (PVMS3) are presented
in Figure 15. The controlled statistics from PVMS simulagashow the same trends reported
by Choiet al. [11] using DNS and the dynamic-model opposition-contradsts of Prabhuet
al. [13]. The most dramatic change in the rms statistics of throtied flow is observed in the
wall-normal component that has a local minima at a distappeaximately halfway between the
sensing plane location and the physical wall. This localiméanis the so-called virtual wall first
identified by Hammonet al.[9]. A more detailed study of the virtual wall by Prabktal. [13],
using a POD analysis, shows that it behaves like a slip-whitlwhampers the transport of high
momentum fluid towards the wall in the sweep phase of thewadcycle and is believed to be the
principle mechanism for drag reduction in opposition cohtiThe spanwise velocity fluctuations
are generally not altered significantly by the action of colptalthough there is slight attenuation
in the magnitude. To summarize, the effect of oppositiortrabis to attenuate the strength of the
turbulence intensity in the near-wall region and to obgttine near-wall cycle that is responsible
for increased skin friction at the wall through the introtlao of a so-called virtual wall. Our

120F 40



PVMS simulations support these observations which areistems with results from other DNS
and LES of opposition control [1,9,11,13].

Finally, the issue of relative efficiency and accuracy of P¥Mersus the dynamic model for
turbulence control simulations is explored. Consider #wults atRe, = 100 given in Figure 16
which compares the control results for PVYMS and the dynanadehwith DNS where it is seen
that for a similar resolution, PVMS is slightly more acceran predicting the location of the
optimal sensing plane compared to the dynamic model. Tharddge of PVMS is more clear
at Re, = 180, where the agreement for drag reduction predictions forR¥&S simulations
(PVMS3), the higher resolution dynamic model (DYNS3), and #vailable DNS [9] is very good
(see Figure 17). Moreover, even at low resolutions, PVMS RVMS2) produces reasonable drag
predictions that are of the same quality as the slightly &ighsolution dynamic model (DYNZ2).
We have seen a similar insensitivity to resolution when gis®wvMS for the uncontrolled flow
simulation (recall Figure 9). Overall, PVMS is found to be mmefficient (in terms of resolution
requirements) than the dynamic model for all Reynolds nurcbasidered. Likewise, at equal
resolutions, PVMS produces uncontrolled and controlledlte in better agreement with available
DNS.

Conclusions

Our planar implementation of the variational multiscaletimel (PVMS) is shown to be an
excellent tool for obtaining quantitatively accurate msties of drag reduction based on opposition
control in turbulent channel flow. In particular, the tremaedicted by PVMS confirm our findings
(originally obtained using the dynamic Smagorinsky mod§l {hat opposition control loses both
effectiveness and efficiency as Reynolds number incre@astindings also indicate that PVMS
holds an advantage over the dynamic model in the contextrbtikence control, both in terms
of computational efficiency and accuracy. The success of WBESIn the fact that modeling is
confined to the smallest of the resolved scales while thesJadgnamically important scales are
not directly influenced by modeling errors. Based on thiscess, we are currently extending
VMS to flows in complex geometries by utilizing a discontimgdsalerkin framework [4]. In this
new method, the partition between large- and small-scale$e readily changed on an element-
by-element basis — a capability likely needed for complew$loUsing these tools, we hope to
exploit the efficiency, accuracy, and simplicity of the VM&timod for simulating and optimizing
flow-control strategies for complex turbulence flows.
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Table 1:
Table 2:
Table 3:

Table 4:

List of Table Captions
Simulation parameters used in the uncontrolled-flow, BAMIidation study.

Domain and grid resolutions for controlled-flow PVMS siations.
Domain and grid resolutions for controlled-flow dynamiodel simulations.

Optimal drag reduction and corresponding power saviaties at different Reynolds

numbers from PVMS simulations.
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Re, | L, L. N, N, N, N Azt Ayl Ayl Azf

180| 27  47/3 32 33 32 14 353 093 231 236

180| 2 4n/3 32 65 32 14 353 0.63 105 23.6

180| 27  47/3 80 129 96 - 141 0.30 5.2 7.9

590 | 9r/5 4n/5 64 149 64 26 521 0.59 16.3 232

590 | 97/5 4n/5 72 149 72 26 46.3 0.59 16.3 20.6
TABLE 1:
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Case | Re, L, L., N, N, N, N Azt Ayl Ayl Azf
PVMS1| 100 4« 47r/3 32 49 32 14 393 047 79 131
PVMS2| 180 47 47/3 36 65 36 14 62.8 0.63 105 20.9
PVMS3| 180 4« 47r/3 48 65 48 18 47.1 0.63 105 15.7
PVMS4| 360 27 3n/4 48 97 48 20 47.1 058 157 17.7
PVMS5| 590 9x/5 4n/5 72 149 72 26 46.3 059 16.3 20.6

TABLE 2: 190F40



Case | Re, L, L., N, N, N, Azt Ayl Ayl Azt

DYN1 | 100 4r 4/37 32 49 32 393 047 79 131

DYN2 | 180 47 4/37 48 65 48 47.1 0.63 105 157

DYN3 | 180 4m 4/37 48 65 64 47.1 0.63 105 11.8

DYN4 | 360 27 3/4r 48 97 64 471 058 157 133

DYN5 | 590 9/57 4/5m 72 149 96 46.3 0.59 16.3 155
TABLE 3:
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Case Re, y: AD% P’D/P¢ P’D/P\qb\
PVMS1| 100 16.07 26.27 269.9 45.3
PVMS2| 180 16.01 25.60 105.2 19.1
PVMS3| 180 15.26 24.75 994 18.0
PVMS4| 360 14.36 24.07 77.2 13.5
PVMS5| 590 14.05 21.52 66.5 10.9

TABLE 4:
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List of Figure Captions

Figure 1. Opposition control schematic.

Figure 2: Near-wall turbulent structures for LES of Re, = 180 channel flow: (a) with and
(b) without opposition control (y! = 16). Structures are visualized using an iso-surface of
negative A\, = —0.0055, the second largest eigenvalue of the velocity gradient tsor [7].

Figure 3: Velocity profiles in wall coordinates for Re, = 180: —— DNS,---- PVMS, and
—-— dynamic model. (a) mean streamwise velocity with------- law of the wall. (b)—(d) root-
mean square velocity components.

Figure 4: Mean-velocity profiles for different resolutions at Re, = 180: —— unfiltered
DNS, - PVMS at 32 x 33 x 32 with N = 14, ---- PVMS at 32 x 65 x 32 with N = 14,

—-— coarse grid “DNS” at 32 x 65 x 32.

Figure 5: Root-mean square velocity components for differet resolutions at Re, = 180:
—— unfiltered DNS, -------- PVMS at 32 x 33 x 32 with N = 14, ---- PVMS at 32 x 65 x 32
with N = 14, — — coarse grid “DNS” at 32 x 65 x 32.

Figure 6: Mean velocity profiles for different partitions at Re, = 180 using 32 x 65 x 32:
——DNS,---- N = 14,—— N =16, and-------- N = 18.

Figure 7: Root-mean square velocity profiles for different @rtitions at Re, = 180 using

32 x 65 x 32: ——DNS,---- N =14,—— N =16,and------- N =18.

Figure 8: Velocity profiles in wall coordinates for Re, = 590: —— DNS (ref. 30),----
PVMS, and —-— dynamic model with (72 x 149 x 72). (a) mean streamwise velocity with
-------- law of the wall. (b)—(d) root-mean square velocity components.

Figure 9: Mean-velocity profiles at Re, = 590 using different resolutions: ---- PVMS
64 x 149 x 64 with N = 26; —— PVMS 72 x 149 x 72 with N = 26; —-— dynamic model
64 x 149 x 64; - dynamic model 72 x 149 x 72; —— DNS [30].

Figure 10: Drag histories for different sensing plane locabns at e, = 100. PVMS1 with a
partition N = 14 using a resolution of 2 x 49 x 32).

Figure 11: Drag histories for different sensing plane locabns at e, = 180. PVMS3 with a
partition N = 18 using a resolution of @8 x 65 x 48).

Figure 12: Drag histories for different sensing plane locabns at Re, = 360. PVMS4 with a
partition N = 20 using a resolution of ¢8 x 97 x 48).

Figure 13: Drag histories for different sensing plane locabns at Re, = 590. PVMS5 with a
partition N = 26 using a resolution of (2 x 149 x 72).

Figure 14: Optimal drag reduction and sensing plane locatias: —— PVMS; ---- dynamic
model [1]; —-— DNS at Re,, = 100 using a resolution of 2 x 65 x 42). The symbolss , 0 ,o,
and ¢ are for Re, = 100, 180, 360, and 590, respectively.
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Figure 15: Velocity profiles in wall coordinates for controlled flow: PVMS3 with resolution
(48 x 65 x 48) on the domain {r,2,4/37); —— PVMS3 (no control); and —— PVMS3
(control). (a) mean streamwise velocity with------- law of the wall. (b)—(d) root-mean square
velocity components.

Figure 16: Optimal drag reduction and sensing plane locatias for Re, = 100: —— PVMS1;
---- DYN1 [1]; and — — DNS at Re, = 100 using a resolution of 42 x 65 x 42).

Figure 17: Optimal drag reduction and sensing plane locatias for Re, = 180 using different
resolutions: —— PVMS; ---- dynamic model [1]; ¢ DNS [9, 11].
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