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Abstract

With a focus on commodity PC systems, Beowulf clusters traditionally lack the cutting edge network architec-

tures, memory subsystems, and processor technologies found in their more expensive supercomputer counterparts.

What Beowulf clusters lack in technology, they more than make up for with their significant cost advantage over

traditional supercomputers. This paper presents the cost implications of an architectural extension that adds recon-

figurable computing to the network interface of Beowulf clusters. This extension is called an intelligent network

interface card (INIC). A quantitative description of cost-effectiveness is formulated to compare alternatives.

Cost-effectiveness is considered in the context of three applications: the 2D Fast Fourier Transform (2D-FFT),

integer sorting, and PNN image classification. It is shown that, for these three representative applications, there is

a range of basic hardware costs and cluster sizes for which the INIC is more efficient than a purely serial solution

or an ordinary cluster. Furthermore, the cost model has proven useful for designing the next generation INIC.

Keywords

intelligent network interface, dataflow computing, reconfigurable computing, cluster computing, Beowulf

Cluster.

I. I NTRODUCTION

Beowulf-class computers (cluster computers based on commodity off-the-shelf, COTS, hard-

ware and open source system software) have emerged as a low cost supercomputing solution

for a variety of problems. Unfortunately, the COTS hardware that reduces the cost of Beowulf

clusters also limits their applicability to some classes of problems that depend on a high per-

formance interconnect to achieve scalability, such as the Fast Fourier Transform. In general,

Beowulf clusters lack the cutting edge network, memory, processor, and I/O subsystems found

in their more expensive supercomputing counterparts. Although Beowulf clusters are low cost,

they must provide scalability for applications to be cost-effective.

Reconfigurable computing (RC) is a cutting-edge processing technology currently receiving a

great deal of attention. It is based on configurable hardware, predominantly Field Programmable

Gate Arrays (FPGAs). By utilizing the ability of programmable hardware to instantiate cus-

tom functional units to implement dataflow computations, Reconfigurable Computing has been

shown to be effective at providing speedups for an assortment of applications. Unfortunately,

reconfigurable computing faces two major hurdles: cost and general applicability. The interplay

of these two factors can have a devastating impact on the cost-effectiveness of RC. Specifically,

hardware that is expensive and not broadly applicable is difficult to justify purchasing.
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Historically, high density FPGA devices have been expensive. Reconfigurable computing

cards based on these devices have been low-volume specialty parts. This further contributes

to the high cost of the technology. Recently, the cost of high-density FPGA devices has been

falling; however, reconfigurable computing platforms are still low-volume, specialty compo-

nents. RC platforms will not reach commodity status until high-volume applications arise.

High-volume applications of FPGAs have long been hampered by FPGA’s lack of general ap-

plicability. For some applications, they offer impressive speedup, while for others they offer no

performance advantage. One of the earliest barriers facing RC was the insufficient gate counts

to support floating-point applications. Although the underlying FPGA technology has matured

to the point that it can be competitive with workstations for some floating-point applications [1],

[2], it is still not ideal for a number of applications that require intensive double-precision

floating-point. Hindering the technology further is its reliance on the PCI bus to transfer data to

and from host memory. The low bandwidth and high latency (for a processor interconnect) of

the PCI bus often decimates the speedups that RC can offer. Since a reconfigurable computing

card and a network card would typically share a single PCI bus, an application that performs sig-

nificant communication must pass data over the PCI bus three times — network interface to host

memory to reconfigurable computing card to host memory. This overhead further complicates

the applicability to commodity clusters.

A. Adaptable Computing Cluster

With the ever growing demand for higher performance, it is appropriate to investigate how

revolutionary computing models, such as RC, can best be brought into the mainstream. An In-

telligent Network Interface Card (INIC) based on a high performance NIC and reconfigurable

computing was proposed in [3]. The resulting Adaptable Computing Cluster (ACC) was evalu-

ated and it was shown that the network interface is an excellent place to exploit reconfigurable

computing [3], [4], [5]. Given this positive evaluation of speedup over a range of applications,

this paper addresses the question: “does the performance justify the additional cost?”

B. Cost-Effectiveness of an INIC

Quantitative measures, such as speedup and iso-efficiency, have been used for decades to

evaluate parallel architectures [6]. Likewise, the general principle of cost-effectiveness is a key
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component of the system design process. Indeed, the oft-touted advantage of a Beowulf-cluster

is cost-effectiveness. However, there has been scant work in a pragmatic definition of cost-

effectiveness, and the few formulations that do exist are simplistic. Some early work assumes

that cost is proportional to the number of processors [6]. Others have included the number of

communication links [7]. A more realistic cost equation accounts for memory and assumes

that dual processor nodes cost 33% more than single processor nodes [8], [9]. However, no

cost models to date address the interconnection cost, which — for Beowulf-class machines —

is distinctly non-linear. While existing cost functions capture first-order effects, they are not

representative of Beowulf-class machines.

The express goal of this work is to show the cost-effectiveness of adding the INIC feature to

a Beowulf cluster. An important corollary to this goal is that a more complex formulation of

cost-effectiveness is a valuable metric. The model is critical at two junctures: when deploying

a new system to meet a particular application demand, and when designing new equipment

for inclusion in such systems. While the primary purpose of a system is to accomplish the

mission, an implicit goal when engineering any system is to minimize cost. When designing

a new system, it is tempting to over design individual components for the sake of maximum

reuse and maximum performance. In practice, many features are seldom used, and component

reuse is rare. Alternatively, it is tempting to make choices that impact performance to lower

cost. In reality, both cost and performance are critical to achieving cost-effectiveness, and a

cost/performance analysis is needed for each design choice. Furthermore, as shown in Section V,

cost-effectiveness can be used to design improved components.

C. Overview

The rest of this paper is organized as follows. Section III summarizes previous performance

results to provide the performance portion of a quantitative cost/performance analysis. Using a

simple linear least squares model, the performance data is fit to a linear speedup equation for

three applications on three cluster platforms.

Next, we develop a cost model to describe each of the three cluster technologies employed.

There are actually two cost/performance ratios of interest. The first, denotedEserial, compares

each of the three parallel technologies against a single, serial computer. In contrast,Ecluster com-

pares two parallel cluster technologies; in our case an ordinary cluster against an INIC-enhanced
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cluster. This second measure of cost-effectiveness is shown over a range of realistic network and

hardware costs, identifying cost-effective break-even points (Section IV). Considering a range

of realistic costs allows us to consider the cost impacts of Moore’s Law on this technology.

Finally, Section V illustrates how these cost-effectiveness measures can be used to improve

future generations of network interface cards. Realistic cost data from the development of the

GRIP2 card [10] is used.

Two sections bookend the three core sections: the next section describes the three platform

technologies used, and Section VI describes related work. Finally, Section VII summarizes the

main contributions of this work.

II. ACC SYSTEM ARCHITECTURE

The goal of Clemson’s Adaptable Computing Cluster (ACC) project is to explore architec-

tural enhancements to Beowulf clusters that improve performance and scalability without re-

ducing the cost-effectiveness of the system. Toward that end, a cluster was constructed with two

network interfaces: an enhanced network interface with reconfigurable computing technology

and a conventional Gigabit Ethernet NIC. Combined with data about a next generation enhanced

NIC, this provides three parallel platforms that form a basis for the work presented here. The

traditional technology is the standard Gigabit Ethernet card solution. The prototype technology

is the initial experimental hardware, and the next generation technology is the hardware that is

under development.

Figure 1 illustrates the core of the enhanced network interface. Whereas a traditional NIC

simply buffers data in memory (or FIFO) between the host and the network, an INIC inserts

reconfigurable logic along the datapath. The reconfigurable logic could then be used in a range

of modes, including:

[Figure 1 about here.]

• Compute Accelerator— Defined as using the FPGAs strictly for application computing tasks,

this mode significantly enhances the computing power of a node for some tasks. Research

demonstrating the ability of reconfigurable computing to accelerate certain classes of applica-

tions is too extensive to document here.

• Combined Compute/Protocol Accelerator— Placing computing and protocol elements in the
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reconfigurable logic takes advantage of the insertion of a high-performance computing core

in the network datapath. Reconfigurable logic can manipulate data passing between the host

and the network (at little or no cost), or can serve as a processor with a low-latency network

connection. This allows the reconfigurable logic to benefit a large class of applications including

those addressed in Section III, and support abstractions such as MPI derived data types.

• Protocol Processor— As a protocol processor, the FPGAs are used strictly for network pro-

cessing. A properly designed Intelligent NIC could perform all of the protocol processing for a

cluster node, offering more features (such as collective operations) and higher bandwidth than

current commodity network subsystems. Unlike some solutions that have attempted to use an

embedded processor on the NIC for protocol processing, the INIC approach adds additional

computing capabilities to the network interface. If adequate external memory bandwidth is pro-

vided, this additional logic can provide protocol support for very high rate networks (ten gigabits

per second should be achievable with current FPGAs). Protocol processors are useful for any

application performing significant communication as they offload processing from the CPU and

can significantly improve network performance[11].

Prototype System

The ACC experimental platform is an 16-node Beowulf running the Scyld Linux distribution.

Eight of the nodes contain a 32-bit PCI motherboard with a 1GHz Athlon and 512 MB of RAM.

On the PCI system bus is a SysKonnect PCI Gigabit Ethernet NIC and a Fast Ethernet NIC.

These eight systems also include an ACEII card. The ACEII card has an onboard PCI bus

attaching aµSPARC processor and a PCI Mezzanine Connector (PMC) to the FPGAs. The PMC

is populated with an Alta Technologies PMC Gigabit NIC based on the Packet Engines Hamachi

chipset. The ACEII card is a reconfigurable computing board from TSI TelSys. Figure 2 shows

a simplified block diagram of the board. The eight remaining nodes each contain a 1.1GHz

Pentium III processor with a SysKonnect PCI Gigabit Ethernet NIC and a Fast Ethernet NIC on

a 32-bit PCI bus.

The prototype used is not ideal. It has a few deficiencies that prevent it from achieving its

full potential as an Intelligent NIC. These include slow PCI interfaces, a single 32-bit 33MHz

bus for all data traffic to the FPGAs, an older generation of reconfigurable logic, and limited

memory attached to the FPGAs. Nonetheless, it will suffice to demonstrate the concepts being
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addressed, and it has the advantage of a standard PMC connector permitting the use of off-the-

shelf network adapters. Newer boards with similar cost address some of these issues but lack

the features necessary to support networking functions. Theoretically, an Intelligent NIC would

be implemented as a single chip with external RAM — similar to modern high performance

NICs. Section III predicts the achievable performance using a next generation Intelligent NIC

and addresses the achievable performance with the prototype INIC.

[Figure 2 about here.]

III. A PPLICATIONS AND THEIR PARALLEL SPEEDUPS

Two of the most important factors of any architecture are the performance of applications on

the architecture and the cost to achieve that performance. Three applications — a512 × 512

2-D Fast Fourier Transform (2D-FFT), integer sorting, and PNN image classification — were

selected for this study. These applications were chosen for two reasons. Pragmatically, they

can be implemented on the prototype. Secondly, they emphasize the ACC architecture’s ability

to significantly outperform a commodity cluster. For each of the applications, the architecture-

specific implementation is a derivation of the standard parallel implementation with changes

to exploit the new architectural features. This highlights the ability to use the INIC with the

same programming model as existing clusters. This section briefly presents the applications,

their implementations, and their performance. For further details, refer to [3], [4], [5]. In the

diagrams used to explain the implementations, rounded boxes describe processes, rectangles

represent function blocks, and arrows represent the flow and sequence of data. Where there is

ambiguity, sequences are numbered. Each diagram shows a single network transaction. Note

that many of these transactions occur concurrently.

A. 2D-FFT

[Figure 3 about here.]

The first application considered was the two dimensional Fast Fourier Transform. The base-

line parallel and serial implementations use the highly optimized Fastest Fourier Transform in

the West (FFTW) package[12]. On a distributed memory architecture, the matrix is distributed

over the processors in a row-block distribution. The algorithm as implemented can be decom-

posed as:
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• compute the 1D-FFT for each row

• transpose the matrix (redistribution of data)

• compute the 1D-FFT for each row

• transpose the matrix (a second redistribution of data)

The matrix transpose becomes the bottleneck in such a scheme and is a perfect target for

implementation with an INIC. Like the parallel implementation, the INIC matrix transpose is

composed of three operations: a local transpose step, an all-to-all communication, and a fi-

nal permutation. Unlike the standard parallel implementation, an implementation using INICs

pushes all of the data manipulation needed for the transpose (on both the send and receive sides)

onto the INIC, as shown in Figure 3. This allows the data manipulation to be embedded in the

communication at little additional cost (slightly higher latency than a network transaction with-

out the transpose requires). Furthermore, the communication protocol used can be customized

to the specific application, since each node knows exactly how much data will be exchanged

with every other node.

B. Integer Sorting

[Figure 4 about here.]

The second application considered, integer sorting, is a common benchmark. Although some

benchmarks use non-uniformly distributed keys (often Gaussian [13]), the results presented here

are based on synthetically generated and uniformly distributed keys. This is a well-established

precedent and allows a focus on the evaluation of the basic I/O and computational performance

of the architecture. As others have recognized, sampling in a pre-sort phase helps address the

shortcomings of this assumption by leading to a more balanced workload.

Each of the implementations first sorts the data into buckets that fit well in the processor cache.

These buckets are then sorted with Count Sort as in [14]. For the parallel implementation, a

distributed memory to distributed memory sort over a power-of-two (2k, k ∈ Z) number of

processors is evaluated. Each processor begins by bucket sorting its data intoP buckets. Bucket

i from each processor is then sent to processori. As a processor receives the data, it bucket sorts

the data into buckets designed to fit in processor cache. Once all of the data has been collected,

each bucket is sorted with Count Sort. The Count Sort is the final sorting phase. With 32 bit
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integers and more than128 buckets there is no need for the final bubble sort described in [14].

On a problem size of221 keys or more, a minimum of128 buckets are needed for the problem

to map into cache.

Figure 4 illustrates the differences in data flow for a traditional parallel implementation and

two INIC implementations. Since bucket sorting is particularly amenable to implementation

on the INIC, both bucket sorts and the communication operations should be implemented in

hardware. Unfortunately, the limited resources of the Xilinx 4085XLA devices on the prototype

prohibit performing the full receive side bucket sort in hardware; however, the received data can

be pre-sorted into 16 buckets, each of which can be bucket sorted by the host. As shown in

Section III-D, this approach can still provide a performance benefit.

Figures 4(b) and (c) show a block diagram of operations in the INIC reconfigurable logic. On

the sending side, data is transferred directly from host memory to INIC memory. Along the path,

the data is manipulated to perform the bucket sort operation. Like the parallel implementation,

the INIC implementation can overlap communication with computation. In fact, the INIC can

start transmitting data at lower bucket thresholds (one packet) since there is no computational

overhead1 for starting a send. Hence, on the sending side, the INIC handles all of the compu-

tation and protocol processing, leaving the processor free for other tasks such as disk I/O. On

the receiving side, the bucket sort can be done as data is received2. As minimum thresholds are

reached, data is transferred to the host. After all data is received, each bucket is sorted with

Count Sort.

C. PNN Image Classification

[Figure 5 about here.]

The third application considered is PNN image classification. The Probabilistic Neural Net-

work (PNN) was designed by Specht [15] using a kernel function by Parzen [16]. It was later

applied to the domain of satellite image classification by Chettri [17]. The algorithm is based on

the equation:

f(X|Sk) =
K

Pk

Pk∑
i=1

exp

[
−(X −Wki)

T (X −Wki)

2σ2

]
(1)

1This is not to say that there is no computation involved in starting a send, only that starting a send is handled by hardware

that sits idle if no send is in progress.
2Again, the prototype splits the receive operation between the card and the host.

May 21, 2004 DRAFT



10

whereK = (2π)−d/2σ−d, Wki is theith training vector from thekth class,Pk is the total number

of training vectors in thekth class,d is the dimension of each vector andσ is a smoothing

parameter. The pixels,X, and weights,Wki are vectors of lengthd where each element of the

vector corresponds to a satellite sensor measurement. The algorithm computes a value for each

pixel for each ofN classes and assigns a class to the pixel based on the highest score.

The PNN algorithm is a data-parallel application that operates on a single pixel at a time.

Classification of a single pixel depends only on the value of the pixel and not on the value of

any adjacent pixels. More importantly, the computation required for each pixel is significant.

Thus, PNN is easily parallelized on a standard Beowulf Cluster with a relatively slow network

interface.

The parallel implementation used here assumes that the image to be classified resides on the

“master” node and that the classified image will be returned to the master node. Each “slave”

node maintains a local copy of the training vectors. Total time is measured as the time to dis-

tribute pixel data to the slaves, classify the pixels on the nodes, and return the classified pixels

to the master.

For the PNN algorithm, the INIC is capable of implementing all of the computation. There-

fore, it is configured as an auxiliary processor with no communication capabilities, as shown

in Figure 5. Ostensibly, the pixels to classify and the classified results could be communicated

directly between the master and the INIC in each node, but this is unnecessary. The performance

impact from using a separate network interface is negligible.

D. Performance Analysis

[Figure 6 about here.]

Figure 6 compares potential next generation INIC speedup with the speedup of a prototype

INIC implementation and the measured performance of a baseline (Gigabit Ethernet) cluster.

Results are measured for the prototype implementation of the 2D-FFT and PNN3 and esti-

mated (based on measured performance for the 2D-FFT) for the integer sort implementation.

All speedups for the next generation INIC are estimated. Speedups are relative to a single node

without a reconfigurable computing card. This is a reasonable comparison for FFT because in
3Measurements were taken on 2, 4, and 8 nodes and estimated for 16 nodes
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the serial implementation, the transpose is unneeded. For integer sorting, the potential increase

in performance given by a reconfigurable computing board in a single node would be eliminated

by the PCI interface. For all three applications, the cost is compared to that of an unenhanced

serial node; thus, speedup should be relative to the same technology. Speedups are plotted as

individual points on the graph. In addition, the least squares method was used to generate a

linear model of speedup as a convenience for later comparison. This line is also plotted.

Figure 6 shows that the INIC has great potential to accelerate the three applications under

consideration. Figure 6(a) indicates that the prototype INIC will offer better performance than

the baseline cluster for the 2D-FFT. This is achieved by performing the transpose data manipu-

lation along the network data path (with minimal additional cost) and by implementing a custom

protocol that is efficient for small data transfers. Figure 6(a) also indicates that a next generation

INIC has the potential for linear speedup up to 16 processors, but the prototype cannot achieve

this. In this instance, the prototype performance is limited by the single 32-bit 33 MHz bus

connecting the FPGAs to the host and the network.

Figure 6(b) shows that the potential prototype INIC performance is only moderately better

than the performance of the baseline cluster for integer sorting. For this application, the pro-

totype INIC is constrained by both the limited bus bandwidth and the density of the FPGAs.

The potential INIC speedup is much higher, even superlinear. Superlinear speedup is achieved

by performing both the send side and the receive side bucket sorts in the INIC. This hides a

significant part of the computation in the communication operation.

Finally, Figure 6(c) indicates that even the prototype can achieve drastically better perfor-

mance than a baseline cluster for PNN image classification. This is simply an illustration of the

capabilities of FPGAs as computing elements. In the case of an Adaptable Computing Cluster,

this capability can scale very well for some applications.

IV. COST ANALYSIS

Using commodity PCs in a cluster environment requires the addition of high-performance

networking equipment to each node. In addition, a network backplane (often a switch) must be

added externally, further increasing the cost of a cluster. Furthermore, achieving the Adaptable

Computing Cluster (ACC) results presented in Section III requires the addition of reconfig-

urable hardware to each network interface. Each piece of extra hardware added to the cluster
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increases the cost of achieving the promised performance. Although clusters are typically built

from a collection of serial nodes, the extra hardware needed to build the cluster changes the

cost relationship between clusters and single node serial implementations. This is particularly

significant when adding an expensive component like an INIC. The question that arises is one

of cost-effectiveness: how can the maximum performance per unit cost be achieved?

Cost-effectiveness is an extension of the traditional measure of speedup. Though measure-

ments such as speedup and iso-efficiency are valuable tools, they do not account for the cost of

achieving performance targets. At first glance, it would seem that cost-effectiveness adds little

information; however, the cost model for a cluster ofN nodes is more complex than a simple

linear relationship (N× the cost of a serial machine). Cost-effectiveness,E, is defined as a ratio

of the ratios of price to performance for two technologies, or:

E =

C1

Speedup1

C2

Speedup2

. (2)

Values ofE greater than one indicate that technology 2 is more cost-effective. Likewise, a value

less than one means that technology 1 is more cost-effective.

To calculateE, the cost of the two technologies being compared must be determined. The

ACC will be evaluated based on its cost-effectiveness relative to a single serial node and a stan-

dard Beowulf Cluster with Gigabit Ethernet. The cost of a single node is simple to determine,

but costs for clusters are more complex than those typically modeled. The first step to modeling

these costs is to define the cost of a cluster as the sum of the cost of the nodes and the cost of the

network:

CCluster(N) = N × CNode + CNet(N) (3)

whereCNode is the cost of a node, andCNet(N) is the cost of a network forN nodes. Here,

it is assumed that the cost of a node is constant across all nodes in a given cluster. Modern

high-performance networks are often purchased as an expandable chassis with some number of

installed modules. Typically, even those networks that come as a single unit can be modeled as

a base cost plus some incremental cost of expansion over some set of sizes. It is seldom possible

to buy high-performance networks of arbitrary sizes. The model accounts for this by defining a
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“switch increment” which is the minimum difference in the number of ports between two switch

configurations. Hence,CNet(N) can be modeled as:

CNet(N) = B(N)× CSwitchIncrement + CSwitchBase (4)

whereB(N) is the number of switch increments needed,CSwitchIncrement is the cost of each

increment, andCSwitchBase is the baseline cost of the switch.B(N) can in turn be defined as:

B(N) =

⌈
N

SizeofSwitchIncrement

⌉
(5)

Equation 5 contributes a step function characteristic to the overall cost of a cluster.

Turning to the node cost, there are three configurations to consider. The first is the cost of a

serial node with no networking, orCSerNode . The second adds the cost of a network adapter to

form the node cost:

CNode = CSerNode + CNetworkAdapter (6)

The third adds the cost of reconfigurable computing technology for an INIC enhanced node:

CINICNode = CSerNode + CNetworkAdapter + CRC (7)

or,

CINICNode = CNode + CRC (8)

[Figure 7 about here.]

In turn, this can be applied to Equation 3 to get the cost model of an ACC.

CACC (N) = N × (CNode + CRC ) + CNet(N) (9)

[Table 1 about here.]

Table I shows the costs for a prototype INIC cluster constructed in December, 2000. Defining

CRC to be the difference in component costs between a traditional NIC and an INIC constructed

from current generation FPGAs implies thatCRC could range as low as$250. As transistor sizes
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shrink in accordance with Moore’s Law, the cost of the FPGA device sufficient to perform the

operations considered here will continue to drop.

Now that a cost function has been developed, cost and performance can be combined to con-

sider cost-effectiveness. Cost-effectiveness can be used to compare two technologies based

on theirprice / performanceratios. Here, an Adaptable Computing Cluster is compared to a

baseline fixed-performance, single-node, serial solution and a Gigabit Ethernet based cluster so-

lution. ESerial will be used to refer to all comparisons (ACC and Gigabit Ethernet) to a serial

implementation. In turn,ECluster will be used to refer to comparisons between the clusters. Since

speedup depends on the application and parallel technology,E is defined on a per-application,

per-platform basis.ESerial is a special case in which the speedup for the serial node is one;

hence, it can be defined as:

ESerial =
CSerNode

Ctechnology(N)
Speedup(N)

(10)

whereCtechnology(N ) refers to the cost of the technology considered.

Figure 7 comparesESerial for three technologies: a baseline cluster, a prototype ACC (based

on the prototype INIC), and a next generation ACC (based on a next generation INIC). ForCRC ,

$7500 was used for the prototype INIC and$750 (based on the cost determined in Section V)

was used for the next generation INIC. For each graph, two lines are included for each applica-

tion. One is based on the actual (or estimated) performance of the various platforms. The other

is based on linear model of speedup achieved with the least squares estimate. This allows in-

termediate points to be plotted to illustrate the distinct step-like nature of the cost-effectiveness

curve.

In each case, the prototype ACC is distinctly less cost-effective than the other technologies

due both to its high cost and relatively low performance increase; however, the next generation

ACC can achieve a cost-effectiveness near one for the integer sorting application. In fact, the

next generation ACC is expected to achieve a cost-effectiveness drastically higher than one for

the PNN application. This is a significant accomplishment since an ACC is drastically more

expensive than a serial node.

While ESerial defines the relative cost per unit speedup, Figure 7 is somewhat non-intuitive in

that the termCNet(N) causes clusters which do not achieve superlinear speedup to have a cost-
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effectiveness less than one. Further, since the purpose is to assess an enhancement to a cluster

architecture, it is better to evaluate the cost-effectiveness relative to the baseline architecture —

a standard Beowulf Cluster with Gigabit Ethernet. For this,ECluster is used.

ECluster =

CCluster(N)
SpeedupCluster(N)

CACC (N)
SpeedupACC (N)

. (11)

Using Equation 11 as a metric assumes that adequate funds are available to build a cluster of

sizeN , other constraints (space, heat, data sets to be processed) limit the practical cluster size to

N , and it is desirable to determine if the performance gains from adding an INIC are justifiable.

WhereECluster is greater than one, an Adaptable Computing Cluster is more cost-effective than a

standard Beowulf Cluster (showing an improvement in theprice / performanceratio). Likewise,

a value less than one means that the standard Beowulf Cluster is more cost-effective. Figure 8

compares the relative cost-effectiveness of three implementations of three applications. The

baseline cluster always has a cost-effectiveness of one relative to itself. While the prototype

ACC is less cost-effective than the baseline cluster, the ideal ACC achieves significantly better

cost-effectiveness in many cases. As a note, the anomalies near the low end the SSE graphs in

Figure 8 illustrate the dangers of assuming a linear speedup model. The least squares estimate

misses some of the actual speedups dramatically and yields inaccurate results for those points in

Figure 8.

A significant factor in theESerial for the baseline cluster is the relatively high cost of the

gigabit switch used. This cost also has the potential to skew the relative cost-effectiveness of

the two clusters. Similarly, the high cost associated with the low volume of the prototype INIC

significantly reduces the cost effectiveness of the prototype ACC. Thus, to illustrate the potential

impact of these issues and Moore’s Law, Figures 9, 10, and 11 illustrate the impacts of switch

cost and INIC cost on the relative cost-effectiveness of a fixed size (sixteen nodes) ACC. Fig-

ures 9, 10, and 11 also provide an example of howE can be used to assess a new architectural

feature.CNet(N) was chosen to range from the current cost of a Fast Ethernet switch,$10004,

to the cost of a Gigabit Ethernet switch for the prototype,$28000. Similarly, CRC was chosen
4This cost is appropriate for high end Fast Ethernet switches that offer the performance desired in a cluster as opposed to

lower end switches targeted at small office environments that do not require simultaneous full-duplex bandwidth on all links.
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to range from a minimal cost of$100 to the prototype INIC cost,$7500.

For the purposes of Figures 9, 10, and 11, the cost of nodes was maintained at a constant

$2000. While the cost of equivalent nodes will drop over time or, correspondingly, the speed

of a fixed price node will go up over time, the applications considered are already limited by

network and memory subsystem performance. Network performance is being held constant and

memory performance is growing significantly slower than processor performance; hence, it is

reasonable to consider the graphs without the need to vary node cost or performance.

The breakpoint between “cost-effective” and “not cost-effective” illustrated in Figures 9, 10,

and 11 occurs whenECluster = 1. From the figure, it is clear that an ACC can be a cost-

effective enhancement for the applications under consideration at the right cost. The additional

performance achievable with a next generation ACC make it a clear choice for these applications

in all scenarios except those where the switch cost drops near its minimum while the INIC cost is

still near its maximum. The prototype INIC, however, is clearly not a cost-effective enhancement

at its current cost. Indeed, reaching cost-effectiveness for both applications would require that

CRC drop to $1000. This is not surprising as the performance enhancement provied by the

prototype INIC is significantly constrained by the single-bus architecture employed. Section V

will discuss a design capable of achieving the next generation INIC performance enhancement

while constrainingCRC to $750.

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

V. A PPLYING COST-EFFECTIVENESS TOBUILD A BETTER INIC

Cost-effectiveness is an important metric for the design of new architectural features. The

proper design of an INIC provides an excellent example of this principle at work. When building

an INIC, it would be easy to take an off-the-shelf reconfigurable computing board and an off-

the-shelf Gigabit Ethernet card and plug the two together. Indeed, this was the approach taken to

build the prototype for this work. This same approach could be applied using newer technology

cards; however, doing so would yield an $18,000 INIC. It can be inferred from the preceding
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cost analysis that this is not a good idea. If the goal is to be significantly more cost-effective

than a commodity cluster, Figures 9, 10, and 11 clearly indicate that a target INIC cost of $2000

is more appropriate. If performance is ignored, building a NIC with an FPGA for $2000 is

relatively easy. Unfortunately, performance implications cannot be ignored.

In Section III, Figure 6 references the potential speedup of a next generation Intelligent NIC.

This potential, based on the use of Gigabit Ethernet for the network fabric, must be achieved

to have a significant cost-effectiveness advantage at a $2000 price point. Thus, designing an

INIC requires careful attention to both performance and cost. This section presents a design

to achieve the performance of the next generation INIC built for a Gigabit Ethernet backplane

presented in Section III while minimizing development and production costs. The proposed

design is illustrated in Figure 12.

The first objective is achieving the full potential performance of the INIC architecture. This

requires that at least two gigabits per second of bandwidth be available between the FPGA

device(s) and the MAC. Simultaneously, there must be two gigabits per second of bandwidth

available between the FPGA device(s) and host memory. In addition, there needs to be sufficient

FPGA logic resources to perform the tasks required. Finally, there must be enough memory and

memory bandwidth to support the buffering and processing of data.

To achieve two gigabits per second of bandwidth to the host memory, 64-bit 66-MHz PCI

is required. It is possible to achieve two gigabits of bandwidth between the FPGA(s) and the

network using 64-bit 66-MHz PCI, but it is undesirable. Commodity chipsets are available

(such as the Vitesse XMAC-II VSC8840) that provide a simple asynchronous FIFO interface

with a full gigabit of bandwidth in each direction. Sufficient FPGA logic will be application

dependent. For the 2D-FFT, the two Xilinx 4085XLA devices available on the prototype have

abundant resources; however, the integer sort application needs additional RAM resources to

maintain counts for enough buckets to perform the full bucket sort on the receiving side. A

single Xilinx Virtex-II 1000 provides as much logic as the two Xilinx 4085XLA devices and

provides the additional RAM needed for the integer sort application.

Memory is used for two purposes on an INIC: buffering packets for communication and

buffering data for computation. In the prototype, the SRAM is used as a computation buffer

and the external FIFOs are used as a communication buffer. This is not an ideal scenario since
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packet data must be kept in the SRAM until an acknowledgment is received. It would be better to

have a separate communications buffer to hold data that has been transmitted while waiting for

acknowledgment. The buffer should be large enough to keep a sufficient number of outstanding

packets to allow full rate communications. In addition, there should be enough memory to stati-

cally allocate buffer space for each connection (typically one connection would be used per node

in the cluster). Static allocation is not strictly necessary and removing this constraint reduces the

size of the communication buffer needed. Fortunately, the memory needed for this type of access

is inexpensive, and the hardware design can be simplified by allowing static allocation. Accesses

to this buffer will be bursty and sequential and will require 4 gigabits per second of sustainable

bandwidth. Since memory needs for the computation buffer are dependent on the application,

as much storage and bandwidth as possible should be provided. The computation buffer should

be based on Zero-Bus-Turnaround (ZBT) SRAM to allow random accesses without penalty.

[Figure 12 about here.]

The second objective is minimizing cost. The Xilinx Virtex-II 1000 can provide both the PCI

interface and FPGA resources needed for the INIC. This saves the cost of a separate component

for the PCI interface and saves the design cost of building an integrated device. The BG560

package provides an adequate number of user I/O pins. The Gigabit Ethernet MAC is most easily

provided by an off-the-shelf chip such as the Vitesse XMAC-II VSC8840 used by SysKonnect

in some versions of their Gigabit Ethernet cards. It provides a full-featured Ethernet interface for

a relatively low cost. Alternatively, the MAC could be implemented in the FPGA, but providing

the same level of features found in commercial interfaces would consume a significant amount

of relatively costly FPGA fabric.

For the communications buffer, 133-MHz SDRAM with a 64-bit datapath is adequate to meet

the performance targets. This memory is the same commodity RAM used in modern desktop

machines, so 256 MB can be provided at little additional cost. Accesses to the communication

buffer are long, sequential bursts, so SDRAM introduces little penalty. For the computation

buffer, ZBT-SRAM should be used to provide penalty free random accesses with reads and

writes back to back. ZBT-SRAM is much more expensive, so only a limited amount can be pro-

vided while maintaining cost-effectiveness. The proposed design, shown in Figure 12, includes

two banks of 2 MB each.
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Table II provides a list of components and costs for the design proposed in Figure 12. Support

parts include such things as transceivers and clock generators. Volume production begins to

play a factor when considering the board fabrication costs. The quoted cost per board was

based on production of 1000 boards per month. Dropping to 100 boards per month has only

an incremental impact on cost ($54, or six percent). Dropping to 10 boards per month, which

is more characteristic of current reconfigurable platforms, increases fabrication cost to$400 per

board, an increase of thirty percent in overall board cost5. More importantly, the non-recoverable

engineering (NRE) costs associated with each new board design must be amortized across all of

the cards produced. Unlike reconfigurable computing cards that will have total sales of only a

few hundred boards at most, a intelligent network adapter could be sold in higher volumes, since

it could be marketed for cluster applications, traditional reconfigurable computing applications,

and network encryption applications such as IPSec[18], [10].

[Table 2 about here.]

The data in Table II can now be used to calculate aCRC for this design. Of the items listed,

only the Virtex-II and the SRAM are completely unique to the INIC. The size of the SDRAM

is larger than that necessary for a standard NIC and so it contributes additional cost. Also, the

board fabrication costs would be higher for an INIC than a standard NIC because the INIC is a

more complicated board and a lower volume board than that used in a commodity NIC. Allowing

ninety percent of the SDRAM and board fabrication costs,CRC is calculated to be$750. This

value can be expected to drop over time as FPGA technology matures. Current (2002) market

prices are a good indication of this: a Xilinx Virtex 1000 ranges between$1400 and $2700

(depending on package and speed grade) while a Xilinx Virtex-II 1000 (a part from a newer

family with comparable density) is only$323.

VI. RELATED WORK

The Adaptable Computing Cluster project seeks to accelerate high-performance parallel com-

puting with RC technology. Similarly, SRC Computers, Inc.[19] has employed reconfigurable

computing in a high-performance parallel computing environment. In the SRC-6, MAP pro-

cessors incorporate FPGAs and give them full access to the shared memory subsystem. While
5All cost information was provided courtesy of USC/Information Sciences Institute East.

May 21, 2004 DRAFT



20

this addresses many of the interfacing issues facing reconfigurable computing technology, it is

implemented in search of peak performance rather than cost-effectiveness.

Technologies such as Myricom’s Myrinet [20], used in the Berkeley NOW [21], and Com-

paq’s Servernet-II [22] are demonstrating that cluster users are willing to pay for higher perfor-

mance networks in commodity systems. It is reasonable to expect that a volume-produced INIC

would be of similar cost to Myrinet or Servernet-II interfaces.

A number of efforts have researched using dedicated computational resources for network

processing. Research at the University of Wisconsin [23] suggests that fixing one processor of an

SMP for communication processing benefits light-weight protocols and improves performance

when communication is a bottleneck. Indeed, many gigabit networks now include embedded

processors on the NIC for various network processing tasks. Research efforts such as Typhoon

[24], Georgia Tech’s VCM [25], RWCP’s GigaE PM project [26], and the University of British

Columbia’s GMS-NP project [27] all use such a processor to accelerate distributed computing.

Similarly, research at CMU explored hardware to augment an ATM card to boost distributed

programming speeds with a Hardware Assisted Remote Put (HARP)[28]. An INIC can subsume

the functionality proposed by these efforts; however, it has the potential to be more cost-effective

by providing flexible computational capabilities as well.

While others have created clusters with reconfigurable cards in each node [29], we believe

that integrating the configurable fabric with the NIC is an important innovation. Specifically, it

is difficult to achieve cost-effectiveness across a wide range of applications if the reconfigurable

computing units are unable to process the network data stream directly.

Research and development efforts using FPGAs for networking are too numerous to cover

thoroughly here. Applications at the network interface include such things as data encryp-

tion [10], network intrusion detection systems [30], and prototyping [31]. These applications

leverage the configurability of FPGAs to compensate for continuously changing environments.

Network switches and routers have long used FPGAs for a variety of purposes [32], [33], [34],

[35], [36], [37], but recent work [38], [39] has extended that functionality to include LAN and

WAN applications. For cluster computing, moving the FPGA from the switch into the network

interface has two distinct advantages. First, for applications that use the FPGA as a computer

accelerator, the I/O bus is a much better interconnect than the network link. Second, it brings
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the FPGA into the protection domain of the node. Thus, issues such as access controls can be

addressed by the node operating system. In addition, this work differs by focusing on the impli-

cations of FPGAs in the network for a parallel computing system rather than on WAN or LAN

style applications.

VII. C ONCLUSIONS

Cost-effectiveness is of particular concern in the Beowulf community because Beowulf Clus-

ters were introduced as a low-cost alternative to traditional supercomputers. Although previous

work established the performance advantage of an INIC feature, potential users of the resulting

adaptable computing cluster are very sensitive to cost. Any extension to this architecture must

provide a performance improvement without imposing a significant cost penalty if it is to be

accepted. Consequently, a complete analysis of the INIC must include some characterization

of its cost-effectiveness. In this paper, a complex quantitative measure of cost-effectiveness for

Beowulf-class machines was introduced, specifically incorporating the nonlinear aspects of a

cluster’s cost.

Two important results have been established. First, cost-effectiveness was considered for three

representative applications over a range of basic hardware costs and cluster sizes. The prototype

for the INIC architecture would not be considered cost-effective. It offered significant perfor-

mance improvements in many cases; however, these were far outweighed by the additional cost

for all applications except PNN image classification. The next generation architecture does have

the potential to be cost-effective. To achieve this potential, an INIC must be closer to the theo-

retical performance capabilities while minimizing cost. Section V presents a design for an INIC

that would offer significantly higher performance than the prototype and would be significantly

lower cost. Second, the added complexity of the cost model is not just academic. Cluster costs

are distinctly non-linear and this fact must be accounted for when comparing technologies. In

this effort, the complex cost model was used to indicate when to switch from an ordinary cluster

to an adaptable computing cluster.
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