Red Storm IO Performance Analysis

IEEE Cluster 2007
17 Sept

James H. Laros III
Sandia National Labs
jhlaros@sandia.gov

http://www.cs.sandia.gov/RSIOPA
View From the Cheap Seats

Normally Classified

Switchable Nodes

Normally Unclassified

I/O and Service Nodes

Disconnect Cabinets

Disk storage system not shown
Some Important Numbers

- 12960 nodes (2.4Ghz Opteron dual core, 25920p)
- 3D Mesh Topology
- 3.6 TB/sec Bisection Bandwidth
- 2.1 GB/sec Individual Link Speed (unidirectional)
- Light Weight Kernel (Catamount) – Compute
- Cray Modified SUSE Linux – IO
- Qlogics 2300 2Gb dual port HBA
- Data Direct Networks S2A 8500 controllers
 - 4, 2Gb ports per controller
End to End IO Path
Goal?

• 50000MB/sec from application to parallel file-system
 – Read or write
 – File-per-process or Shared-file
• Lustre is the parallel file-system
• File-system configuration
 – 160 OSSs (IO nodes)
 – 2 OSTs per OSS (320 OSTs)
Controller Internals

Couplet Connectivity
Back End Testing
(Single path Theoretical)

• What is the limiting factor using a single port of controller?
• Internet disk channels (A-H,P,S) 1Gb/sec (100MB/sec)
• Disk 43MB/sec (min) – 78MB/sec (max)
• Controller port 2Gb/sec (200MB/sec)
• HBA 2Gb/sec (200MB/sec)

8 DDN data channels (A-H) → 800MB/sec
43MB/sec × 1 disk/channel × 8 channels = 344MB/sec (min)
78MB/sec × 1 disk/channel × 8 channels = 624MB/sec (max)

• Inside the controller disk limits the rate - BUT
• Still limited by 200MB/sec controller port/HBA port
Back End Testing (Aggregate Theoretical)

• What is the limiting factor when using all four ports of controller?

8 DDN data channels (A-H) → 800MB/sec
800MB/sec ÷ 4 ports/controller = 200MB/sec/port/controller

• Each port on controller gets ¼ of each data channel

100MB/sec/channel ÷ 4 ports = 25MB/sec/channel/port

• Minimum per disk rate is 43MB/sec
 – Exceeds shared per data channel rate
• Still limited by controller port/HBA/data channel rate (200MB/sec)

Sandia National Laboratories
IO Node/Controller Configuration (AGAIN)
Back End Testing (Demonstrable)

- Single port on IO node, Single port Controller
 - SCSI layer 196.23MB/sec (A)
 - File-system layer 179.84MB/sec (B)
- Both ports on IO node, one port each on separate controllers
 - SCSI layer same (196MB/sec) (A and D)
 - File-system layer 102.35MB/sec (B and C)
- One port each on four IO nodes, all four ports on a single controller
 - SCSI layer 195.13MB/sec (Ax4)
 - File-system layer 140.82MB/sec (Bx4)
Parallel File-System Tests

• IOR – parallel application
 – File-per-process
 – Shared-file

• Lustre
 – OSS/OST assignment carefully controlled

• Testing Oversubscription
 – 60:1, ratio of compute to IO nodes in initial configuration
 – Achieve this by limiting OSS/OSTs used
Front End Test

(constant client count = 1, varying xfersize range = 4 - 112 MiB)
File-Per-Process

(constant stripe size = 1, constant xfersize = 2 MiB)

MiB/sec vs. increasing number of clients

write
read
File-Per-Process (Oversubscribed)

(constant stripe size = 2, constant xfersize = 4 MiB)

write
read

MiB/sec

increasing number of clients
Shared-File (Oversubscribed)

(constant stripe size = 8, constant xfersize = 16 MiB)

M1B/sec vs increasing number of clients

write
read
Conclusions

• Physical configuration sufficient to achieve goals
 195MB/sec per port using 320 ports yields 62400MB/sec
• Initial non-Lustre file-system testing not good
• Lustre results more promising
 – 154.15MB/sec (avg) × 320 OSTs = 49280MB/sec
 (from file-per-process oversubscribed)
 – 176.31MB/sec (max) × 320 OSTs = 56419.2MB/sec
 (from file-per-process oversubscribed)
 – Unfortunately only for writing
 – Only for file-per-process
• Read performance suffered in all cases
• Write performance for shared-file also insufficient
• Results shared with Cray and CFS
Future

- Testing will continue after software or hardware upgrades
- Larger scale testing
 - Demonstrated 54104MB/sec (writing)
 - 86% of theoretical!
 - 320 OSTs
 - 640 clients
 - File-per-process
 - Not reliably repeatable 😞
 - Demonstrated > 50000MB/sec (writing)
 - Client counts up to 3200
 - Indicates rates can be maintained at larger scale
 - Not reliably repeatable 😞
 - Little good to say about read rates

http://www.cs.sandia.gov/RSIOPA
Acknowledgements

• Team participants

Lee Ward
Ruth Klundt
Sue Kelly
Jim Tomkins
Brian Kellogg

Thanks also to Bob Ballance and John Noe for accommodating the long system time periods required, and the Cray admin staff for being responsive 24 hours a day.
Revisit File-Per-Process

(constant stripe size = 2, constant xfersize = 4 MiB)
Revisit Shared-File

(constant stripe size = 8, constant xfersize = 16 MiB)
File-Per-Process
(Larger client counts)

(constant stripe size = 2, constant xfersize = 8 MiB)
Shared-File
(Larger client counts)

(constant stripe size = 160, constant xfersize = 8 MiB)

![Graph showing performance metrics for different operations (write_vn, read_vn, write, read) across varying numbers of clients. The x-axis represents the increasing number of clients, while the y-axis shows MiB/sec. The graph illustrates trends and performance degradation with higher client counts.]