Advances in the Scyld Beowulf System: The Third Generation

Donald Becker

Scyld Computing Corporation

becker@scyld.com

Presented with MagicPoint

Car Story

A recently purchased E30 325is

Bill Carlson's garage...

Loose ball joint that couldn't be removed...

Solution?

If it can't be fixed with a hammer...

Or a very large wrench...

Use a cut-off wheel

What are we trying to Implement?

Just clusters?

No

Scalable systems.

Why?

Because everything is now a "cluster"

Broader Approach

Cluster:

Independent computers

Combined into a unified system

Through software and networking

Cellular Multiprocessor:

Coupled computers run as subsystem "cells"

Presented as a unified system

Through software and interconnect

Previous Generation Solutions

How have cluster problems been addressed in the past?

Classic Beowulf clusters

Full OS installation on all nodes

Supports user login on any node

Administration by scripts and replicated remote commands

Multiple consistency and synchronization tools

Unification with a limited GUI

Second Generation Solution -- Scyld Beowulf "2000"

Full OS installation on a single "master"

Compute nodes designed as a computational resource

Multistage boot

Single point administration installation and updates

BProc-based single process space view

Centralized monitoring and job control

Why Change?

Previous generation was a well-design innovation

BUT

New functionality was not one-to-one replacement

Users resist change

Too much focus on scalable single applications

Increasing use of parametric execution

Shared use of compute nodes

Used for balancing and monitoring application servers

Single point of failure concerns

Single master provided all services

Third Generation Scyld System

Multiple masters

Shared or isolated administrative domains

Multiple servers for replication or redundancy

Direct PXE boot

Legacy BeoBoot protocol for existing installations

Abstracted VMA services

"Pluggable" memory region transport

Use of underlying file system

Continuum of file system support

Multiple state management systems

Several different of process initiation/control mechanisms

Less Exciting Third Generation Features

Range of configuration descriptions

Single text file for simple deployment

Directory of node definitions

SQL database

Specific, descriptive error reporting

Extensive performance counters

Nodes log system messages to masters

What has changed in the world?

Ubiquitous PXE network boot

Multiple instruction set architectures

IA64®, Opteron®, perhaps even Power-N

Distributed file systems

Match application semantic needs

More candidates

Harder choices

More SAN storage options

IPMI

Experience with previous solutions

Lessons Learned

("Thing you only talk about in retrospect")

BeoBoot

BeoBoot is just converting everything to a network boot

Linux used in stage 1 for its

Extensive network driver set

Reliable TCP

PXE is a obvious replacement

BProc

BProc combines separate concepts that should be isolated

Directed process migration

Unified process table

Library copying

Node state

Cluster membership / node failure detection

Other Lessons Learned

("What were we thinking?")
Never deploy multicast as default

Lossy switches

Flawed host implementations

Undebuggable performance loss

No native support on non-Ethernet systems

Incompatible with mainstream advances

Myrinet-only boot was spiffy, but pointless

Boot discovery awkward

Diagnostics problematic

Do not put node assignment in the GUI

Support everything e.g. PERL, Java, and rexec on clients

Provide examples

Other Lessons Learned

("What were we thinking?")
Don't mix process control with

Node state ("Booting"

Thing we will not change

Zero-base node boot

Diskless administration

No configuration on nodes

Simple compute nodes

Full Linux install on master

BeoNSS:
Cluster-specific Name Service

Scalability

Performance

...but we now provide a function for memorizing users

MPI and PVM integration

Direct execution (no mpirun)

Scheduling hooks

Providing an internal queuing system

Platform Changes

Why PXE Ethernet Boot is Good

Implementation driven by broader market

Vendors are highly motivated to implement it

Broad NRE recovery results in low cost

It is everywhere

Ubiquitous on server systems

Common on other systems

Trivial cost to add to existing or low-end system

It is a defined standard

Protocol anticipates

Multiple servers

Multiple client architectures

Common implementation flaws can be overcome

Ugliness can be forgotten after boot

Cluster PXE requires great care

Common implementation

ISC DHCP daemon

TFTP server

pxe-linux or elilo

This combination results in

Bad scalability

Many failure points

No failure traceability / reportability

DHCP boot rather than a true PXE service

Poor control of node assignment

Precludes multicast-TFTP

Integrated PXE server

Issue: Unreliable boots

Designed for workstations, not clusters

PXE clients halt rather than reboot on timeouts

TFTP's primitive flow control results in bandwidth capture

Key element: loss-based flow control

Slow booting clients to avoid fatal timeout

Defer initial response and reply to discovery

Delay

Combined

Node assignment

Node state update

Boot information service

Boot file service (TFTP)

IPMI -- Intelligent Platform Management Interface

What do we get?

Power control independent of OS

BIOS setup over Ethernet

Boot process monitoring

Consistent hardware monitoring

Why do we care?

Standard

Inexpensive ($23+)

