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♦ Diversity of execution environments
ØGrowing complexity of modern microprocessors.
Ø Deep memory hierarchies
Ø Out-of-order execution
Ø Instruction level parallelism

ØGrowing diversity of platform characteristics
Ø SMPs
Ø Clusters (employing a range of interconnect technologies)
Ø Highly parallel systems (> 100K processors)
Ø Grids (heterogeneity, wide range of characteristics)

♦ Wide range of application needs
ØDimensionality and sizes
ØData structures and data types
ØLanguages and programming paradigms

Challenges in Achieving High Challenges in Achieving High 
Performance on Today’s SystemsPerformance on Today’s Systems
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Motivation  Self Adapting                                    Motivation  Self Adapting                                    
Numerical Software (SANS) EffortNumerical Software (SANS) Effort

♦ Optimizing software to exploit the features of a 
given system has historically been an exercise in hand 
customization. 
ØTime consuming and tedious 
ØHard to predict performance from source code
ØMust be redone for every architecture and compiler
ØSoftware technology often lags architecture
ØBest algorithm may depend on input, so some 
tuning may be needed at run-time.

ØNeed for quick/dynamic deployment of optimized 
routines.
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Where Does the Performance Go? orWhere Does the Performance Go? or
Why Should I Care About the Memory Hierarchy?Why Should I Care About the Memory Hierarchy?

1

100

10000

1000000

19
80

19
82

198
4

198
6

198
8

19
90

19
92

19
94

19
96

199
8

200
0

200
2

20
04

Year

P
er

fo
rm

an
ce

Processor-DRAM Memory Gap (latency) µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)

“Moore’s Law”

Processor-Memory
Performance Gap:
(grows 50% / year)

CPU

DRAM



3

6

Optimizing Computation and Optimizing Computation and 
Memory UseMemory Use

♦ Computational optimizations
ØTheoretical peak:(# fpus)*(flops/cycle) * Mhz

Ø Pentium 4: (1 fpu)*(2 flops/cycle)*(2.8 Ghz)    =  5600 MFLOP/s

♦ Operations like:
Ø α = xTy : 2 operands (16 Bytes) needed for 2 flops;                       

at 5600 Mflop/s will requires 5600 MWord/s bandwidth

♦ Memory optimization
ØTheoretical peak: (bus width) * (bus speed)

Ø Pentium 4: (32 bits)*(533 Mhz) = 2132 MB/s    = 266 MWord/s
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Levels Of Levels Of AdaptivityAdaptivity

♦ On the processor-network level: optimization of 
the kernels for the specific architecture
§ Processor: investigate processor hardware 

characteristics and optimize for them, eg memory 
hierarchy.

§ Network: investigate connectivity, latency, 
bandwidth, congestion, load

♦ The parallel environment in which the code is 
run.
Ø Adaptation to the parallel system or grid

♦ Interfacing to the user code: algorithmic 
decisions
Ø Adaptation to user data: investigate user data and 

make decisions based thereon

Adaptivity can apply to several levels in 
a scientific computing environment
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Performance Tuning MethodologyPerformance Tuning Methodology

Input Parameters
System specifics

Hardware 
Probe

Parameter study 
of code versions

Code Generation
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Execution
Calculate 

Run-time

Performance 
Monitoring

Database update

Software Execution
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Software Generation Software Generation 
Strategy  Strategy  -- ATLAS BLASATLAS BLAS

♦ Takes ~ 20 minutes to run, 
generates Level 1,2, & 3 BLAS

♦ “New” model of high 
performance programming 
where critical code is machine 
generated using parameter 
optimization.

♦ Designed for modern 
architectures
Ø Need reasonable C compiler

♦ Today ATLAS in used within 
various ASCI and SciDAC
activities and by Matlab, 
Mathematica, Octave, Maple, 
Debian, Scyld Beowulf, SuSE,…

♦ Parameter study of the hw 
♦ Generate multiple versions 

of code, w/difference 
values of key performance 
parameters

♦ Run and measure the 
performance for various 
versions

♦ Pick best and generate 
library

♦ Level 1 cache multiply 
optimizes for:
Ø TLB access
Ø L1 cache reuse
Ø FP unit usage
Ø Memory fetch
Ø Register reuse
Ø Loop overhead minimization

See: http://icl.cs.utk.edu/atlas/ for the ATLAS software
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ATLAS ATLAS (DGEMM n = 500)(DGEMM n = 500)

♦ ATLAS is faster than all other portable BLAS implementations and it is 
comparable with machine-specific libraries provided by the vendor.

♦ Looking at sparse operations 
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Efforts To Go Beyond Dense Kernel OperationsEfforts To Go Beyond Dense Kernel Operations

♦ Kernels
Ø Sparse matrix-vector 

multiply (SpMV): y=A*x
Ø Sparse triangular solve 

(SpTS): x=T-1*b
Ø y=AAT*x, y=ATA*x
Ø matrix triple-product 

(R*A*RT), Powers (y=Ak*x), …

♦ Optimization techniques 
(implementation space)
Ø Register blocking
Ø Cache blocking
Ø Multiple dense vectors (x)
Ø A has special structure (e.g.,

symmetric, banded, …)
Ø Hybrid data structures (e.g., 

splitting, switch-to-dense, …)
Ø Matrix reordering

Register blocking 

(100 Mflop/s
)

Cache blocking 

(80 Mflop/s
)Reference code  

(50 Mflop/s
)

♦ Optimizes for processor characteristics 
for multigrid software
Ø Integration of smoother and residual, 

prolongation/restriction
Ø Gauss Seidel Smoothers (3 steps)
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LAPACK For ClustersLAPACK For Clusters
♦ Developing middleware which couples cluster system 

information with the specifics of a user problem to 
launch cluster based applications on the “best” set of 
resource available. 

♦ Using ScaLAPACK as the prototype software, but 
developing a framework

~ Mbit Switch, 
(fully connected)

~ Gbit Switch, 
(fully connected)

Remote memory server,  
e.g. IBP (TCP/IP) 

Local network file server, 
SUN’s NFS  (UDP/IP)e.g. 100 Mbit

Users, etc.

13

User has problem to solve ( e.g. Ax = b)

Natural 
Data (A,b)

Middleware 

Application Library (e.g. LAPACK, 
ScaLAPACK, PETSc ,…)

Natural 
Answer (x)

Structured
Data (A’,b’)

Structured
Answer (x’)

User Interface/MiddlewareUser Interface/Middleware
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Time to solution of Ax=b (n=60k)

0

5000

10000

15000

20000

25000

32 34 36 39 42 45 47 49 51 54 56 58 62 64

Number of processors

T
im

e 
(s
ec

o
n
d
s)

Naive
LFC 

LFC Performance ResultsLFC Performance Results

Increasing
margin

of potential
user error

Using up to 64 of
AMD 1.4 GHz

processors
at Ohio

Supercomputer
Center

15

Self Adapting for Message PassingSelf Adapting for Message Passing
♦ Communication libraries
ØOptimize for the specifics of one’s configuration.
ØA specific MPI collective communication algorithm 

implementation may not give best results on all platforms.
ØChoose collective communication parameters that give best 

results for the system when the system is assembled.

♦ Algorithm layout and implementation
ØLook at the different ways to express implementation

Root

Sequential                                   Binary                       Binomial
Ring

TUNING 
SYSTEM

Different 
Algorithms, 
Size msgs

Best 
Algorithm, 
Block msgs
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Fault Tolerance in the ComputationFault Tolerance in the Computation
♦ The next generation of 

DOE ASCI computers 
are being designed with 
131,000 processors 
(IBM Blue Gene L)

♦ Failures for such a 
system is likely to be 
just a few minutes 
away.

♦ Application 
checkpoint/restart is 
today’s typical fault 
tolerance method.

♦ However, checkpoint & 
system reboot time 
approaching MTTF
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Algorithm Based Fault Tolerance Using Algorithm Based Fault Tolerance Using 
Diskless Check PointingDiskless Check Pointing

♦ Not transparent, has to be built into the 
algorithm

♦ N processors will be executing the computation.
Ø Each processor maintains their own checkpoint locally

♦ M (M << N) extra processors maintain coding 
information so that if 1 or more processors 
die, they can be replaced

♦ Look at M = 1 (parity processor)

♦ FT-MPI based on MPI 1.3 with FT similar to 
what was done in PVM.
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How Diskless Check How Diskless Check PointingPointing WorksWorks

♦ Similar to RAID for disks.

♦ If X = A XOR B then this is true:
X XOR B = A
A XOR X = B
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Diskless Diskless CheckpointingCheckpointing
♦ The N application 

processors (4 in this 
case) each maintain their 
own checkpoints locally.

♦ M extra processors 
maintain coding 
information so that if 1 
or more processors die, 
they can be replaced.

♦ Will describe for m=1 
(parity)

♦ If a single processor 
fails, then its state may 
be restored from the 
remaining live processors

P0 P1

P3P2

P4

P4 = P0 ƒ P1 ƒ P2 ƒ P3 

Parity
processor

Application
processors
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Diskless Diskless CheckpointingCheckpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P1 = P0 ƒ P2 ƒ P3 ƒ P4 
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Diskless Diskless CheckpointingCheckpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P0

P3P2

P4
P1

P4 takes on the identity of P1
and the computation continues
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Algorithm BasedAlgorithm Based

♦ Built into the algorithm
ØNot transparent
ØAllows for heterogeneity

♦ Developing prototype examples for 
ScaLAPACK and iterative methods 
for Ax=b
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PCG Iterative Equation SolverPCG Iterative Equation Solver

♦ Given a large, sparse matrix A and a 
vector B, determine the vector x such 
Ax=b.

♦ Chose an initial vector x and iteratively 
refine it until Ax=b to some error 
tolerance.

♦ A is stored as a compressed set of 
arrays and 5 vectors needed to carryout 
the iteration.

♦ Each iteration the 5 vectors are updated 
using the original matrix A and right 
hand side b.
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CG Data StorageCG Data Storage
Think of the data like this

A b 5 vectors
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Parallel versionParallel version
Think of the data like this Think of the data like this

on each processorA b 5 vectors

A b 5 vectors

.

.

.

.

.

.

No need to checkpoint
each iteration, say every k
iterations.
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Diskless versionDiskless version

P0 P1

P3P2

P4

P0

P1

P2

P3 P4
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Diskless Diskless CheckpointingCheckpointing ExperimentsExperiments
PCG; n = 264144

17 Sparc Processors
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Diskless Diskless CheckpointingCheckpointing
♦ Diskless checkpointing can be a viable 

technique for fast frequent checkpointing.
♦ Converts disk overhead into network 

overhead
♦ For numerical libraries, the checkpointing

interval can have little effect on total 
overhead.

♦ Can apply to other algorithms like matrix 
decompositions, i.e. LU, QR, Cholesky.
ØInteresting issues about when failure occurs need 

to roll back computation to checkpoint
ØUndo computation to last checkpoint and then 

recover
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Research DirectionsResearch Directions
♦ Self Adapting Numerical Software
♦ Fault tolerant algorithms
♦ Parameterizable & Annotated 

libraries
♦ “Grid” (network) enabled strategies

A new division of labor between 
compiler writers, library writers, and 
algorithm developers and application 
developers will emerge.  
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Collaborators / SupportCollaborators / Support

♦ ATLAS
ØClint Whaley, FSU
ØAntoine Petitet, Sun

♦ LFC
ØKenny Roche, UTK
ØPiotr Luszczek, UTK
ØJeffery Chen, UTK

♦ SALSA/BeBOP
ØVictor Eijkhout, UTK
ØDavid Keyes, CU
ØBill Gropp, ANL
ØJim Demmel, UCB
ØKathy Yelick, UCB

♦ Diskless Checkpointing
Ø Jim Plank, UTK

Ø Thanks

NSF 
Next Generation Software (NGS)


