| SHif Adapti‘ng Numerical Software
(SANS-Effort) for Sientific
Computing

Jack Dongarra
Innovative Computing Lab
University of Tennessee

and
Computer Science and Math Div

Oak Ridge National Lab
http://www.cs.utk.edu/~dongarra/

¢ Chalengesin Achieving High

Diversity of execution environments

» Growing complexity of modern microprocessors.
» Deep memory hierarchies
» Out-of-order execution
» Instruction level parallelism
» Growing diversity of platform characteristics
» SMPs
» Clusters (employing a range of interconnect technologies)
» Highly parallel systems (> 100K processors)
» Grids (heterogeneity, wide range of characteristics)

Wide range of application needs

» Dimensionality and sizes

» Data structures and data types

» Languages and programming paradigms

{1

L}

Motivation Self Adapting
Numerical Software (SANS) Effort

" Optimizing software to exploit the features of a

given system has historically been an exercise in hand
customization.

» Time consuming and tedious
» Hard to predict performance from source code
» Must be redone for every architecture and compiler
» Software technology lags architecture
»Best algorithm may depend on input, so some
tuning may be needed at run-time.

» Need for quick/dynamic deployment of optimized
routines.

{*.| Where Does the Performance Go? or
“ " Why Should | Care About the Memory Hierarchy?

Processor-DRAM Memory Gap (latency) UProc

. 60%lyr.

1000000
(2X/1.5yr)
“Moore’s Law”
CPU

8 10000 {— "
g Processor-Memory
2 Performance Gap:
o

100 (grows 50% / year)
DRAM
M—ﬁ DRAM 9%/yl'

teT T T T (2X/10 yrs)
& FFPESLHPSSLS

& &
Year
_A 5

¢ Optimizing Computation and
. Memory Use
" Computational optimizations
» Theoretical peak:(# fpus)*(flops/cycle) * Mhz

» Pentium 4: (1 fpu)*(2 flops/cycle)*(2.8 Ghz)

= |5600 MFLOP/s

Operations like:

> a =xly: 2 operands (16 Bytes) needed for 2 flops;

Memory optimization

» Theoretical peak: (bus width) * (bus speed)
» Pentium 4: (32 bits)*(533 Mhz) = 2132 MB/s

=|266 MWord/s

n
“ Levels Of Adaptivity

Adaptivity can apply to severa levelsin
a scientific computing environment

On the processor -network level: optimization of
the kernels for the specific architecture

= Processor: investigate processor hardware

characteristics and optimize for them, eg memory
hierarchy.

* Network: investigate connectivity, latency,
bandwidth, congestion, load

The parallel environment in which the code is
run.

» Adaptation to the parallel system or grid

Interfacing to the user code: algorithmic
decisions

> Adaptation to user data: investigate user data and
make decisions based thereon

?i! Performance Tuning Methodology

Software Installation Software Execution

done once per system

\ Run-time J

£ Software Generation e
L L | |
Strategy - ATLASBLAS 3
* Parameter study of the hw i
Generate multiple versions J
of code, w/difference ¥ W T ——*a
ggy;;&g,lfse y performance * Takes ~ 20 minutes to run
Run and measure the) 9ener’<”;1tes Level 1_,2, & 3 BLAS
performance o varous NG el o g
: where critical code is machine
ﬁgtllfaP;St and generate generated using parameter
. optimization.
Iag\t’%ijz'egaggf. multiply Designed for modern
> TLB access' architectures

» Need reasonable C compiler

: Today ATLAS in used within

: :\:AP unit u:ageh various ASCI and SciDAC
emory fete activities and by Matlab,

> Register reuse Mathematica, Octave, Maple,

» Loop overhead minimization Debian, Scyld Beowulf, SuSE,...

» L1 cache reuse

See: http://icl.cs.utk.edu/atlas/ for the ATLAS software

.(1
< ATLAS (DGEMM n = 500)

3500.0 EVendor BLAS
WATLAS BLAS
30000 F77 BLAS
2500.0
2 20000
9
= 1500.0

1000.0
500.0 1
0.0 -
& i & rg;\';g’ NG @ £ ©
& & o o & N oy v 4
\cg;’) (gf} i & &
§\§ & & @ Q}\gf@ Qy\@@ @Q@g} \QQ\ y = \@659‘? &\,ﬂsp \‘ﬁé
v & 29 oS

Architectures \@Q
ATLAS is faster than all other portable BLAS implementations and it is
comparable with machine -specific libraries provided by the vendor.

Looking at sparse operations

.ﬁ
Efforts To Go Beyond Dense Kernel Operations

Kernels Optimizes for processor characteristics

» Sparse matrix-vector
multiply (SpMV): y=A*x

» Sparse trlangular solve
(SPTS): x=T1*b

> y=AAT*X, y=ATA*x

for multigrid software

» Integration of smoother and residual,
prolongation/restriction

> Gauss Seidel Smoothers (3 steps)

> matrix triple-product v L g sl
(R*A*RT), Powers (y=Ak*x), A

Optimization techniques

(implementation space) 3 (‘%@.

» Register blocking £l] \’cb%ﬁ{5

> Cache blocking "l I

» Multiple dense vectors (x) 1 —r%%@ '\S‘J/b

» A has special structure (e.g ® LY
symmetric, banded, ..)] %%0%6

» Hybrid data structures (e.g 1 4 ’6‘)‘9

i : S

splitting, switch-to-dense, - (5\0’&,8

> Matrix reordering B A PN N

running on Alpha EV6? (ig.csutk edu) machine, NITER=3 %’\S\(‘(bé 1

o>

"~ LAPACK For Clusters

Developing middleware which couples cluster system
information with the specifics of a user problem to
launch cluster based applications on the “best” set of
resource available.

’_= Users, etc. ’7 L ocal kil

) network file server,

e.g. 100 Mbit SUN’sNFS (UDP/IP)
e

eg.1BP (TCP/IP ‘ ‘

~ Gbit Switch, ~Mbit Switch,
(fully connected) (fully connected)

Using ScaLAPACK as the prototype software, but
developing a framework

12

¢ User Interface/Middleware

User has problem to solve (e.g. Ax = b)

Natural Natural
Data (A,b) Answer (X)

Middleware

Structured
Daa(A’,b)

Structured
Answer (X')

n
<! LFC Performance Results

Time to solution of Ax=b (n=60k) USing up to 64 of

AMD 1.4 GHz
25000
Processors
at Ohio
20000 - O Naive
Supercomputer
Center
E 15000 -
Increasing
'g 10000 margin
of potential
5000 user error
o
32 34 36 39 42 45 47 49 51 54 56 58 62 64
Number of processors 4

ﬁ
-~
i

Self Adapting for Message Passing

Communication libraries
» Optimize for the specifics of one’s configuration.

» A specific MPI collective communication algorithm
implementation may not give best results on all platforms.

» Choose collective communication parameters that give best
results for the system when the system is assembled.

%E?(%

Sequential Binary Binomial

Algorithm layout and implementation
> Look at the different ways to express implementation

Different | TUNING Best
Algorithms, SYSTEM Algorithm,

N 15

Size msgs Block msgs

)
“ Fault Tolerance in the Computation

The next generation of
DOE ASCI computers
are being designed with
131,000 processors
(1BM Blue Gene L)

System
(64 catinets, 64x3232)

Failures for such a
system is likely to be
just a few minutes

away.
e, SM2GH Lczln
2 s 05GBDDR
Application _ "o
checkpoint/restart is o mpur reliability
today’s typical fault 3 I Y o ———
tolerance method. SN C
However, checkpoint & E TS N
system reboot time o \g‘\ o
1 R
approaching MTTF aysiem s © o"& BGIL .

. Algorithm Based Fault Tolerance Using
“ ' Diskless Check Pointing

Not transparent, has to be built into the
algorithm

N processors will be executing the computation.
» Each processor maintains their own checkpoint locally
M (M << N) extra processors maintain coding
information so that if 1 or more processors
die, they can be replaced

Look at M = 1 (parity processor)

FT-MPI based on MPI 1.3 with FT similar to
what was done in PVM.

)

L}

How Diskless Check Pointing Works

Similar to RAID for disks.

RAID 4
Block 0, 1,

Block 0 Block 1 Block 2 Block 3 ;ﬁ 2, 3 Parity
Generation
A0 A parity
BO B parity
co C parity
Do D parity

COPYRIGHT & L9586, 1957, 1958, 15559 ADVANCED COMPUTER B HETWORE CORPORATION

If X = A XOR B then this is true:
X XOR B =A
A XOR X =B

ﬁ

il

Diskless Checkpointing

The N application
processors (4 in this

processor

case) each maintain their Application

own checkpoints locally. processors _

M extra processors Parity
maintain coding _ po | P1

information so that if 1

or more processors die, P4
they can be replaced. P2 | P3

Will describe for m=1

(parity)

. P4=P0 ® P1 ® P2 ® P3
IT a single processor

fails, then its state may
be restored from the
remaining live processors

)

-~
i

Diskless Checkpointing

PO

P2

P3

P4

P1=P0®P2 ® P3® P4

PO

P2

P4

20

.ﬁ

Diskless Checkpointing

P4

P
P2 P3
PO

P2 P3

P4

PO

P2

P3

P4 takes on the identity of P1
and the computation continues

& [

21

10

Algorithm Based

“ Built into the algorithm
»Not transparent
»Allows for heterogeneity
" Developing prototype examples for

ScalLAPACK and iterative methods
for Ax=b

22

PCG Iterative Equation Solver

"~ Given a large, sparse matrix A and a
vector B, determine the vector x such
Ax=Db.

"~ Chose an initial vector x and iteratively
refine it until Ax=b to some error
tolerance.

" A is stored as a compressed set of
arrays and 5 vectors needed to carryout
the iteration.

" Each iteration the 5 vectors are updated
using the original matrix A and right
hand side b.

23

11

)

a. CG

Data Storage

Think of the data like this

A

b 5 vectors

24

.ﬁ
~ -
< Parallel version
Think of the data like this Think of the data like this
A b 5 vectors on each processor
] A 5 vectors

i

No need to checkpoint
each iteration, say every k

iterations.

25

)
-~
L}

Diskless version

PO P1

P2 P3

IPO

P1

P2

P3

P4

26

Iﬂ

PCG; n = 264144
17 Sparc Processors

“' Diskless Checkpointing Experiments

8 2%

\ —4— Time w/o Checkpoint
Ny -5~ Time with Checkpoint
23%
\B\ﬂj% 3.8%
2 9 2.7%
0
10 50 100 500 1000 2000
®
k (Iteration per Checkpoint) g
g
3 . /
%” o /
% F)
8
10
0
k (Iteration per Checkpoint))

13

< Diskless Checkpointing

" Diskless checkpointing can be a viable
technique for fast frequent checkpointing.

" Converts disk overhead into network
overhead

"~ For numerical libraries, the checkpointing
interval can have little effect on total
overhead.

"~ Can apply to other algorithms like matrix
decompositions, i.e. LU, QR, Cholesky.

» Interesting issues about when failure occurs need
to roll back computation to checkpoint

» Undo computation to last checkpoint and then
recover

28

“ Research Directions

"~ Self Adapting Numerical Software
" Fault tolerant algorithms

" Parameterizable & Annotated
libraries

- “Grid” (network) enabled strategies

A new division of labor between
compiler writers, library writers, and
algorithm developers and application
developers will emerge.

29

14

)

“ Collaborators / Support

ATLAS

»Clint Whaley, FSU
» Antoine Petitet, Sun
LFC

»Kenny Roche, UTK
» Piotr Luszczek, UTK
» Jeffery Chen, UTK
SALSA/BeBOP

» Victor Eijkhout, UTK
» David Keyes, CU

» Bill Gropp, ANL
»Jim Demmel, UCB
»Kathy Yelick, UCB

Diskless Checkpointing
» Jim Plank, UTK

» Thanks

A

ALLIANCE NSE

Next Generation Software (NGS)

2 SciDAC

4 Sclennific I}Ian:-wrr:.'
thvwn:h-

Terascake Optimal PDE Simuiations

15

