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¢ Chalengesin Achieving High

Diversity of execution environments

» Growing complexity of modern microprocessors.
» Deep memory hierarchies
» Out-of-order execution
» Instruction level parallelism
» Growing diversity of platform characteristics
» SMPs
» Clusters (employing a range of interconnect technologies)
» Highly parallel systems (> 100K processors)
» Grids (heterogeneity, wide range of characteristics)

Wide range of application needs

» Dimensionality and sizes

» Data structures and data types

» Languages and programming paradigms
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Motivation Self Adapting
Numerical Software (SANS) Effort

" Optimizing software to exploit the features of a

given system has historically been an exercise in hand
customization.

» Time consuming and tedious
» Hard to predict performance from source code
» Must be redone for every architecture and compiler
» Software technology lags architecture
»Best algorithm may depend on input, so some
tuning may be needed at run-time.

» Need for quick/dynamic deployment of optimized
routines.
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¢ Optimizing Computation and
. Memory Use
" Computational optimizations
» Theoretical peak:(# fpus)*(flops/cycle) * Mhz

» Pentium 4: (1 fpu)*(2 flops/cycle)*(2.8 Ghz)

= |5600 MFLOP/s

Operations like:

> a =xly: 2 operands (16 Bytes) needed for 2 flops;

Memory optimization

» Theoretical peak: (bus width) * (bus speed)
» Pentium 4: (32 bits)*(533 Mhz) = 2132 MB/s

=|266 MWord/s
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“ Levels Of Adaptivity

Adaptivity can apply to severa levelsin
a scientific computing environment

On the processor -network level: optimization of
the kernels for the specific architecture

= Processor: investigate processor hardware

characteristics and optimize for them, eg memory
hierarchy.

* Network: investigate connectivity, latency,
bandwidth, congestion, load

The parallel environment in which the code is
run.

» Adaptation to the parallel system or grid

Interfacing to the user code: algorithmic
decisions

> Adaptation to user data: investigate user data and
make decisions based thereon




?i! Performance Tuning Methodology

Software Installation Software Execution

done once per system

\ Run-time J

£ Software Generation e
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» Need reasonable C compiler

: Today ATLAS in used within

: :\:AP unit u:ageh various ASCI and SciDAC
emory fete activities and by Matlab,

> Register reuse Mathematica, Octave, Maple,

» Loop overhead minimization Debian, Scyld Beowulf, SuSE,...

» L1 cache reuse

See: http://icl.cs.utk.edu/atlas/ for the ATLAS software
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Architectures \@Q
ATLAS is faster than all other portable BLAS implementations and it is
comparable with machine -specific libraries provided by the vendor.

Looking at sparse operations

.ﬁ
Efforts To Go Beyond Dense Kernel Operations

Kernels Optimizes for processor characteristics

» Sparse matrix-vector
multiply (SpMV): y=A*x

» Sparse trlangular solve
(SPTS): x=T1*b

> y=AAT*X, y=ATA*x

for multigrid software

» Integration of smoother and residual,
prolongation/restriction

> Gauss Seidel Smoothers (3 steps)

> matrix triple-product v L g sl
(R*A*RT), Powers (y=Ak*x), A

Optimization techniques

(implementation space) 3 (‘%@.

» Register blocking £l ] \’cb%ﬁ{5

> Cache blocking "l I

» Multiple dense vectors (x) 1 —r%%@ '\S‘J/b

» A has special structure (e.g ® LY
symmetric, banded, ..) ] %%0%6

» Hybrid data structures (e.g 1 4 ’6‘)‘9

i : S

splitting, switch-to-dense, - (5\0’&,8

> Matrix reordering B A PN N

running on Alpha EV6? (ig.csutk edu) machine, NITER=3 %’\S\(‘(bé 1
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"~ LAPACK For Clusters

Developing middleware which couples cluster system
information with the specifics of a user problem to
launch cluster based applications on the “best” set of
resource available.

’_= Users, etc. ’7 L ocal kil

) network file server,

e.g. 100 Mbit SUN’sNFS (UDP/IP)
e

eg.1BP (TCP/IP ‘ ‘

~ Gbit Switch, ~Mbit Switch,
(fully connected) (fully connected)

Using ScaLAPACK as the prototype software, but
developing a framework
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¢ User Interface/Middleware

User has problem to solve (e.g. Ax = b)

Natural Natural
Data (A,b) Answer (X)

Middleware

Structured
Daa(A’,b)

Structured
Answer (X')
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<! LFC Performance Results
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Self Adapting for Message Passing

Communication libraries
» Optimize for the specifics of one’s configuration.

» A specific MPI collective communication algorithm
implementation may not give best results on all platforms.

» Choose collective communication parameters that give best
results for the system when the system is assembled.

%E?(%

Sequential Binary Binomial

Algorithm layout and implementation
> Look at the different ways to express implementation

Different | TUNING Best
Algorithms, SYSTEM Algorithm,

N 15

Size msgs Block msgs
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“ Fault Tolerance in the Computation

The next generation of
DOE ASCI computers
are being designed with
131,000 processors
(1BM Blue Gene L)

System
(64 catinets, 64x3232)

Failures for such a
system is likely to be
just a few minutes

away.
e, SM2GH Lczln
2 s 05GBDDR
Application _ "o
checkpoint/restart is o mpur reliability
today’s typical fault 3 I Y o ———
tolerance method. SN C
However, checkpoint & E TS N
system reboot time o \g‘\ o
1 R
approaching MTTF aysiem s © o"& BGIL .

. Algorithm Based Fault Tolerance Using
“ ' Diskless Check Pointing

Not transparent, has to be built into the
algorithm

N processors will be executing the computation.
» Each processor maintains their own checkpoint locally
M (M << N) extra processors maintain coding
information so that if 1 or more processors
die, they can be replaced

Look at M = 1 (parity processor)

FT-MPI based on MPI 1.3 with FT similar to
what was done in PVM.
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How Diskless Check Pointing Works

Similar to RAID for disks.

RAID 4
Block 0, 1,

Block 0 Block 1 Block 2 Block 3 ;ﬁ 2, 3 Parity
Generation
A0 A parity
BO B parity
co C parity
Do D parity

COPYRIGHT & L9586, 1957, 1958, 15559 ADVANCED COMPUTER B HETWORE CORPORATION

If X = A XOR B then this is true:
X XOR B =A
A XOR X =B

ﬁ
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Diskless Checkpointing

The N application
processors (4 in this

processor

case) each maintain their Application

own checkpoints locally. processors _

M extra processors Parity
maintain coding _ po | P1

information so that if 1

or more processors die, P4
they can be replaced. P2 | P3

Will describe for m=1

(parity)

. P4=P0 ® P1 ® P2 ® P3
IT a single processor

fails, then its state may
be restored from the
remaining live processors




)

-~
i

Diskless Checkpointing

PO

P2

P3

P4

P1=P0®P2 ® P3® P4

PO

P2

P4
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Diskless Checkpointing

P4

P
P2 P3
PO

P2 P3

P4

PO

P2

P3

P4 takes on the identity of P1
and the computation continues

& [
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Algorithm Based

“ Built into the algorithm
»Not transparent
»Allows for heterogeneity
" Developing prototype examples for

ScalLAPACK and iterative methods
for Ax=b
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PCG Iterative Equation Solver

"~ Given a large, sparse matrix A and a
vector B, determine the vector x such
Ax=Db.

"~ Chose an initial vector x and iteratively
refine it until Ax=b to some error
tolerance.

" A is stored as a compressed set of
arrays and 5 vectors needed to carryout
the iteration.

" Each iteration the 5 vectors are updated
using the original matrix A and right
hand side b.

23
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a. CG

Data Storage

Think of the data like this

A

b 5 vectors

24
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< Parallel version
Think of the data like this Think of the data like this
A b 5 vectors on each processor
] A 5 vectors

i

No need to checkpoint
each iteration, say every k

iterations.

25
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Diskless version

PO P1

P2 P3

IPO

P1

P2

P3

P4
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PCG; n = 264144
17 Sparc Processors

“' Diskless Checkpointing Experiments
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< Diskless Checkpointing

" Diskless checkpointing can be a viable
technique for fast frequent checkpointing.

" Converts disk overhead into network
overhead

"~ For numerical libraries, the checkpointing
interval can have little effect on total
overhead.

"~ Can apply to other algorithms like matrix
decompositions, i.e. LU, QR, Cholesky.

» Interesting issues about when failure occurs need
to roll back computation to checkpoint

» Undo computation to last checkpoint and then
recover
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“ Research Directions

"~ Self Adapting Numerical Software
" Fault tolerant algorithms

" Parameterizable & Annotated
libraries

- “Grid” (network) enabled strategies

A new division of labor between
compiler writers, library writers, and
algorithm developers and application
developers will emerge.

29
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“ Collaborators / Support

ATLAS

»Clint Whaley, FSU
» Antoine Petitet, Sun
LFC

»Kenny Roche, UTK
» Piotr Luszczek, UTK
» Jeffery Chen, UTK
SALSA/BeBOP

» Victor Eijkhout, UTK
» David Keyes, CU

» Bill Gropp, ANL
»Jim Demmel, UCB
»Kathy Yelick, UCB

Diskless Checkpointing
» Jim Plank, UTK

» Thanks
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Next Generation Software (NGS)

2 SciDAC

4 Sclennific I}Ian:-wrr:.'
thvwn:h-

Terascake Optimal PDE Simuiations
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