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Abstract: 
 

“Uncertainty Quantification” (UQ) is the quantitative characterization and use of 
uncertainty in information applications. Fundamental to UQ is the recognition that there 
are two distinctly different types of uncertainty: “variability,” which can be quantified in 
principle using classical probability theory; and “lack of knowledge,” which requires 
more than classical probability theory for its quantification. We readily find both 
fundamental types of uncertainty in complex technical decision problems. While there are 
scientific challenges associated with UQ for certain applications, an important body of 
methods and results exists that is broadly useful. For example, the U.S. has established 
two important methodological precedents, one in nuclear reactor safety, and the other in 
operational licensing of the Waste Isolation Pilot Plant, for the deployment of UQ 
methods in high-consequence decision-making. These precedents, in fact, provide a 
foundation as well as encouragement for future use of UQ in both traditional and 
nontraditional decision applications. 

 

 

Introduction 
 

The need to make high-consequence decisions under severe constraints, including 
decision time and uncertainty in information, will be an important concern for the U. S. 
Department of Homeland Security (DHS). Decisions require four key elements: (1) 
identification of possible events or actions, called scenarios here; (2) assessment of the 
likelihood of these scenarios; (3) prediction of the consequences of these scenarios; and 
(4) understanding the level of confidence in the information gathered for the first three 
elements. In all of these elements, uncertainty in the required information influences the 
decision making process and complicates the required analyses. Ignoring uncertainty, 
perhaps using (believed) conservatism in the decision process, is inadequate and 
dangerous. Instead, fully embracing the influence and consequences of uncertainty in 
high-consequence DHS decisions is the required approach. 
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What is Uncertainty? 
 

Uncertainty pertains to information that is not definitely ascertainable or fixed, not 
precisely determined, not dependable or that is vague or indistinct. A decision maker 
dealing with uncertainty has reduced confidence and assurance in the information, hence 
in decisions that are dependent upon that information. To the degree that we can quantify 
uncertainty, it is increasingly feasible to make more reliable and assured decisions. 

The community that specializes in uncertainty quantification (UQ) (Helton, 1994; 
Kaplan and Garrick, 1981) understands uncertainty should be divided into two categories 
for purposes of quantification. The first category, called variability (also called aleatory 
uncertainty), is uncertainty of the type associated with frequensic (also called objective) 
probabilistic processes and inference. Variability appears, or may appear, in many classes 
of information that DHS S&T must deal with. Variability may arise in the specification 
of inputs for various models (for example, likely wind conditions at a given location); in 
the conduct of the actual modeling (for example, the use of Monte Carlo methods within 
a model); and in the development of scenarios (for example, the use of polling data). 

Variability as a description of uncertainty is constrained by the requirement that sufficient 
data exist to characterize the frequensic probabilistic interpretation underlying it. In other 
words, variability is a product of stochastic behavior, and the accurate characterization of 
this stochastic behavior is presumed to be given or possible. 

The other major class of uncertainty that arises in information is lack of knowledge (also 
called epistemic uncertainty). Lack of knowledge is of even greater importance than 
variability in many DHS decision problems, in our opinion. As an illustration, note that 
lack of knowledge uncertainty is intrinsic to intelligence data. For any single source of 
such data, one is interested in the integrity and fidelity of the information, as well as how 
complete it might be. All of these characteristics are subject to lack of knowledge. When 
more than one source of information is involved, there can be subtle or not so subtle 
differences, or outright conflict, in the presented information. We are then interested in 
constructively resolving this conflict, perhaps through subjective weighting, data 
aggregation, or through the decision to acquire more information. 

At a more detailed level, lack of knowledge uncertainty also arises from (1) lack of 
fidelity in scientific models (for example, uncertainty in the effectiveness of reduced 
order models); (2) lack of fidelity in the computational implementation of models (for 
example, uncertainty in the accuracy of coarsely zoned finite difference models); (3) 
from heterogeneity of required sources of information (for example, combining expert 
opinion with experimental data); (4) from insufficient information (for example, 
insufficient data to characterize the stochastic characteristics of a believed variability); 
(5) from deeper structural questions about scenario development (for example, in the case 
of polling are the “right” questions being asked); (6) and from the question of existence 
of unknown unknowns (for example, what is missing in a model that we have not 
identified). 
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The use of intelligence information in target definition and consequently weapon lethality 
prediction, say for earth penetrating weapons, provides one example of the interplay 
between variability and lack of knowledge. Intelligence data may be necessary to develop 
a target definition for a complex bunker. Specific bunker constructions details may be 
vague, however. We choose the word “vague” precisely: the available information about 
the overall site, architecture, and composition of the bunker may involve variability and 
lack of knowledge factors combined in a complex manner. 

• The type of concrete used in the construction may be uncertain. However, it may 
be adequate in computational analysis of potential lethality of a given weapon 
against the defined bunker to quantify this uncertainty by applying variability to 
the various parameters in a computational concrete model. 

• The site and architecture, such as the depth, the characterization of the 
surrounding geology and the extent of the bunker, are lack of knowledge issues. 
Even if one attempts to place probability distributions on factors governing these 
issues, say with second order probability (see below), expert opinion is likely to 
be important in determining the probabilities and must therefore be included in 
the uncertainty quantification (Keeney and van Winterfeldt, 1991).  

• In this kind of lethality assessment a conservative bounding analysis, based on 
conservative assumptions about depth, geology, and bunker extent, may be 
applied. Nevertheless, such conservative analysis then does not adequately reflect 
the uncertainty underlying the assessment of the bunker within the available 
intelligence data. As Helton has emphasized (Helton, 1994), probabilistic 
performance assessment (in this example, an analysis of the probability of bunker 
kill) requires identifying and quantifying uncertainty, not conservative bounding.  

• Countermeasures, such as disruptive obstacles and false bunkers, are also a lack 
of knowledge issue to the extent that they are ill defined. 

• Finally, assessing the destruction of a specified bunker in the event of an attack 
can be a lack of knowledge issue. 

The combination of variability and lack of knowledge in this example is more prominent 
to the degree that surgical precision is required in an airstrike and direct ground 
engagement is unavailable. 

 

Uncertainty Quantification (UQ) 
 

Uncertainty must be quantified in order to use it systematically in decision-making 
processes. We briefly discuss quantification for both variability and lack of knowledge to 
emphasize issues that we think are relevant to DHS. 

As suggested above, quantification of variability is already specified. This is achieved 
through frequensic probabilistic formalisms. We assume that sufficient information 
exists, or that sufficient information can be gathered, to characterize stochastic variability 
to perform probabilistic inference. For example, in a decision process that uses a 
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computational model where one input is wind conditions at a given location, the UQ 
proceeds quite directly. Wind conditions are described in terms of a frequensic 
probability distribution based on empirical observation (sampling); this distribution is 
propagated through the computational model, typically using sampling-based statistical 
procedures that produce an ensemble of model calculations; the resulting frequensic 
probability distributions of relevant model outputs are statistically summarized; this 
summary is then used in the decision. The key notion here is that objective probabilistic 
information influences the use of the model both in terms of inputs and of outputs. 

This ideal is severely limited by our ability to characterize the input uncertainty, 
propagate it accurately (Helton and Davis, 2000; Kleijnen, 2002; Oberkampf, 2002) and 
usefully summarize the results, especially when there may be many such inputs and the 
model may be very complex and computationally demanding. An important 
philosophical point, however is that if the associated uncertainty is believed to be 
variability, then these difficulties are viewed as simply influencing the accuracy of the 
UQ, not as questioning the nature of the uncertainty or the accepted process of UQ. 

Quantifying lack of knowledge uncertainty is fundamentally harder. In the example 
quantification process above for variability, the first step of quantifying the uncertainty in 
a form that is suitable for propagation through the model is more challenging. There are 
three current options for accomplishing this task. First, second-order probability can be 
applied, where the uncertainty is still characterized by frequency distributions, but the 
choice of distribution is itself now viewed as stochastic. Second, Bayesian methods 
(Press, 2003), used here specifically in the sense of probabilistically quantifying 
subjective (non-frequensic) information, may be applied. For example, Bayesian methods 
are used to provide a probabilistic quantification of expert opinion or for attaching a 
probabilistic quantification to the likelihood of unobserved events (e.g. what was the 
“likelihood” of the 9-11 event prior to September 11, 2001?). Bayesian methods seek to 
attach probabilities to questions like “What is the probability that given intelligence 
information is correct?” Bayesian methods in addition provide systematic methods for 
updating these quantifications based on new information. Third, there are what we will 
refer to as generalized probability theories, typically evidence theory, possibility theory, 
and fuzzy probability (Klir and Yuan, 1995; Ferson and Ginzburg, 1996; Dubois et al, 
2000; Klir and Wierman, 1998; Ben-Haim, 2001). These concepts in some sense all 
generalize classical probability to set-valued probability distributions (rather than 
numerical distributions); but they also thus require certain fundamental changes in the 
allowed inference methods. 

For all of these cases, propagating the resulting quantified uncertainty through a model is 
less straightforward than for variability, and inference about the resulting output 
uncertainty is more complex. Second-order probability characterizations are propagated 
using the same sampling formalisms as used for propagating first-order probability, but 
with associated increase in scope and computational burden to handle the probabilistic 
choice of distributions (Helton, 1994). Bayesian methods demand a heavy computational 
burden even for straightforward models; the computational challenges increase for the 
complex models that DHS deploys. Propagation of generalized probability is currently a 
research problem for these kinds of applications (Helton, Johnson, and Oberkampf, 
2003). Finally, we comment that the choice of uncertainty representation can have a 
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dramatic impact on computational complexity in even simple problems. Averbackh 
(2001) presents an example of an uncertain optimization problem that transforms from 
being polynomially hard to NP-hard due to a change in uncertainty representation. 

There are important examples where propagation of quantified lack of knowledge has 
been successfully performed for very high consequence decisions. In particular, in the 
U.S. for both nuclear reactor safety assessments and in the licensing process for the WIPP 
facility second-order probability has been applied (Breeding et al, 1992; Helton et al, 
2003). In both of these examples, the work was performed within a tight legal regulatory 
structure. This also demonstrates that UQ involving lack of knowledge can be effectively 
deployed in complex technical frameworks. 

We state one caution about “unknown unknowns.” UQ cannot create information from 
nothing. To the extent that we do not know or cannot specifically express something 
understood about unknown unknowns, we cannot quantify this fundamental uncertainty. 
From the perspective of informing important DHS decisions, UQ implements our 
fundamental desire to express identified variability and lack of knowledge uncertainty 
within a methodology that allows scientific assessment of their relative and absolute 
impact. UQ will not quantify truly unknown unknowns.  

 

UQ Challenges for DHS 
 

The DHS ASC program has already emphasized the importance of UQ and we do not 
need to reaffirm that point here. Rather, we simply emphasize several aspects of UQ for 
DHS that naturally follow from our discussion above: 

 Characterization of uncertainty in information that DHS must deal with is of 
enormous importance. This characterization is complex if for no other reason than 
the vast scope of information that might play an important role in various DHS 
decision processes. It is likely that lack of knowledge uncertainty, will be the 
most prominent factor in large classes of DHS information. Therefore, the 
formalism for achieving this characterization is a key issue. The choice of 
formalism is inextricably tied to the problem being addressed by the decision, and 
to the nature of the decision process. 

We also speculate that critical DHS decisions will involve the use of data with 
heterogeneous uncertainty, a mixture of both variability and lack of knowledge 
that should not be completely partitioned. (Such heterogeneity probably is of the 
essence in intelligence data.) Formalism for UQ with heterogeneous uncertainty is 
immature in our opinion. Current approaches operate by either forcing the 
separation of uncertainty into variability and lack or knowledge or strictly 
subsume what we call heterogeneous uncertainty within the lack of knowledge 
category. Current literature (Sentz and Ferson, 2000; Chen, 200; Ben-Haim, 2001) 
discusses combining heterogeneous uncertainty in information. 

 Propagation of uncertainty, for example through coupled multi-model simulation 
frameworks, is important to DHS. For example, to simulate economic 
consequences of an aerosol biological attack minimally requires a physical 
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transport model (partial differential equation-based), an epidemiological model 
(possibly agent-based), and an economic consequence model (again, possibly 
agent-based but different than the epidemic model). For high-consequence 
decisions, validity of each model is a lack of knowledge uncertainty, while the 
predictions of the models for given inputs are likely to be intrinsically variable 
because of the use of stochastic solution methods. “Propagating” uncertainty in 
this situation is nontrivial and presumably has unique requirements based on 
specific DHS needs. 

 Understanding the output for models incorporating uncertainty will be a 
challenge. Typically, for high-consequence decision making it can be difficult to 
understand adequately what a single complex physical model is telling us. The 
problem magnifies for the mass of simulation data arising from active 
quantification of uncertainty. Such simulation data should probably be viewed as 
another application of the data mining and other informatics tools of broader 
interest to the ASC program. 

For example, it is essential to visualize complex data sets in computational fluid 
dynamics to achieve intuitive understanding of the information. In time-dependent 
3-D simulations, data mining tools like pattern recognition methods and 
immersive environments have been under study to move beyond simple summary 
measures of information (such as time-history of a velocity at a specified 
location). The problem of intuiting large-scale complex information in a single 
calculation is increased if we consider an ensemble of such calculations, as might 
be generated using UQ of variability in the underlying problem. We now need to 
go beyond simple statistical summary measures (such as means and variances) to 
develop intuitive understanding of the ensemble. There are similar examples in 
informatics problems, for example arising in the transformation of deterministic 
nodes and edges in a graph to variable quantities. Interest in the visualization of 
uncertain information in computational physics is just beginning [Pang, 2001]. 

 High-consequence decision processes are rather strongly coupled to the modeling 
process when uncertainty is quantified. One illustration of this principle is the 
current attention in the DOE NNSA Stockpile Stewardship Program given to 
“Quantitative Margins and Uncertainties” (QMU). The challenge will be to 
recognize this coupling, and identify key features that must be attended to. 

Here is one example of what we mean. UQ on the face of it, at least for 
variability, or for second-order probability, is straightforward computationally. 
However, part of the uncertainty to be quantified is the validity of the models 
themselves. Understanding this uncertainty influences the decisions that must be 
made about whether or not the models are acceptable (“good enough”) for use in 
the given decision problems. This is a problem of qualification that, in fact, 
depends strongly on the details of the UQ. In this sense, UQ may provide 
quantitative “margins” of usefulness or acceptability of the model.  

Concern about whether a model is “good enough” in traditional computational 
science tends to drive conservatism in the ultimate use of the models that may be 
in opposition to the actual needs of DHS in various circumstances. An example of 
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conservatism is “Do not use the model.” We presume that this is not a suitable 
guidance to DHS for the most part. One way to regard this problem is to ask what 
kind of information would have been required prior to 9/11/2001 to authorize a 
decision to ground all U.S. commercial air traffic. Incorporation of uncertainty 
raises the importance of the qualification process and its use in DHS decisions. 

How and in what sense the UQ is itself validated is an interesting question. For example, 
when is poor validation of a quantified variability a lack of knowledge uncertainty, or 
simply an accuracy problem that may be addressed by gathering more data? The choice 
of interpretation in this case influences the choice of corrective action to improve our 
knowledge. 
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