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Resonant Tunneling Diode
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Goal: Determine current output for a given voltage difference V'
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History of RTDs
e High frequency oscillator (THz)
e Failure due to power lost in lower frequency modes
e Searching for intrinsic oscillation
e Size of diode is measured in angstréms (10~ '9m)

e Device physics dominated by quantum mechanics
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Why Are We Interested in RTDs
e Novel device design
e Better understanding of quantum mechanical effects

e Potential benefits include:

— Sensor technology: THz radiation for biological/chemical

identification

— Speed: Faster data transmission/processing
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Wigner-Poisson Equation

a.]B(aj7 k? t)
ot

f is the electron distribution in RTD, as a function of the electron’s

=W(f) = K(f)+ P(f) + S(f)

position , momentum k, and time ¢

First Term: Kinetic Energy Effects

K(f) = —= 9]

- 2rm* Ox
h : Planck’s Constant m™ : Electron’s Effective Mass
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Wigner-Poisson Equation

af%’tk’ D wi) = K+ P + S(F)

Second Term: Potential Energy Effects

P == [ Fai) Tk =)

’U%k—j%=A2Uﬂx+w—lﬂx—whmﬁmk—ﬁﬂy

This term is nonlinear because U (') depends on f.

U : Electric Potential L. : Coherence Length
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Wigner-Poisson Equation

of (x,k,t)
ot

Third Term: Scattering Effects

=W(f) = K(f)+ P(f)+ S(f)

1 foZC]{

S(f) = T[f e

/ fx,5)dj — f(x, k)]

7 : Relaxation Time f; : Equilibrium Distribution
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Boundary Conditions

The boundary conditions of f specify the distribution of the

electrons that are entering the device.

£ (k)
k>0
k
| .
k<O £ (k)
2
x=0 (Adapted from Frensley, Phys. Rev. B, Vol. 36, 1987) <=L
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Obtaining U for Potential Energy Term

To obtain U from f, you need to solve the Poisson equation for

z(x), the electrostatic potential created by the electrons:
d> 2 1 [0 NET
s = L |Na(x) = & [, f(.)d)

2(0) =0, 2(L)=-V
Once z(x) is known, U(x) = z(x) + A.(x)

q : Charge of Electron ¢ : Dielectric Permittivity
Ny(x) : Doping Profile A.(x) : Potential Barriers
V' . Voltage Difference
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Current Output

Want to analyze the steady-state current output as V' is varied.

Set
New V

v |

Compute

steady-state . Calculate
f current

Basic idea is to:
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Discretization
Use finite difference method for approximation
n., N, - Number of x, k£ points on the grid
Upwind difference scheme for %
Quadrature formula to approximate integrals

Centered differences for Poisson’s solve

Leads to nonlinear ODE in R"=*"*
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Continuation Methods

Solve nonlinear equation W ( f, V) = 0 for f € R"=*"x,

e Determine solution branches f (V') as a parameter V' varies.

e Generates {V;} (parameters) and corresponding { f; }

(solutions)

e Use LOCA (Library of Continuation Algorithms)
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LOCA
e Part of Trilinos - Sandia’s parallel solver project

e Makes use of several other parts of Trilinos:
— NOX : Nonlinear solver
— AztecOO : Preconditioned Krylov linear solvers
— Anasazi : Eigensolver

— Epetra : Data Structure
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Stability of Nonlinear ODEs
Nonlinear ODE: %= = ¢(2)
Steady-state solution: z*
How can we tell if 2™ is dynamically stable?

The eigenvalues (\’s) of the Jacobian ¢’(z*) determine stability
— If Re(A\) < Oforall A\, 2* is stable
— If Re(A\) > 0 forany A, 2* is unstable

LOCA incorporates an eigensolver to calculate eigenvalues
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We Want Instability

As the parameter is varied, the eigenvalues of the Jacobian will

change
A change in stability of equilibirum is called a bifurcation
Want: stable steady-state to go to oscillatory behavior

This change is a Hopf bifurcation

16



Hopf Bifurcation (By Example)

Consider the two-dimensional nonlinear ODE [Kuznetsov, 1998],

dx
(a) _ (px —y —x(2? + y2)>
% r +py — y(z* + y?)
where p is a parameter

e For any p, (‘z) = (8) is a steady-state solution

e The Jacobian at this steady-state is

p —1
L p

e Eigenvaluesare \ =p+1 — Re()\) — P
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e p < (0 == originis stable

e p > () == origin is unstable and oscillatory solution
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Eigenvalues Predict Hopf Bifurcation

e A Hopf bifurcation is characterized by a complex conjugate-pair

of eigenvalues crossing the real axis
e Use LOCA to find such a pair as voltage is varied

e Verify Hopf’s existence using time-integrator (Lawrence
Livermore’s VODEPK)
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Imaginary Part
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Time Integration Results
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Summary
e Using Wigner-Poisson Equations to model RTDs

e LOCA is used to trace-out steady-state electron distributions as

voltage varies

e Preliminary results show a voltage region where current

oscillation can be expected
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Future Work
e Grid convergence
e Hopf tracking with LOCA

e Analysis of equations/numerical methods
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