\V

Who is in Control?
(Enhancing your Simulator using an Extension Language)

Sani R. Nassif
IBM Research - Austin

nassif@us.ibm.com

1N

\V

Hessian-Based Rotational Bounding
for Newton Methods (frustratingly effective!)

Sani R. Nassif
IBM Research - Austin

nassif@us.ibm.com

1N

Environment

N

Semiconductor technology is experiencing an
“analysis discontinuity” at the 65 and 45nm
nodes.

= 2" and 3" order effects are starting to become
dominant and requiring detailed analysis.

= The slowdown in performance gain per node is
fueling a desire to better understand (and reduce)
existing design margins.

= Slowdown also leading to exploration of alternative
circuit topologies and design techniques.

= Designs continue to grow.
» Increasing need for analysis & modeling.

N

Current Simulators

Usually do something like:
= Start and read initialization file.
= Read input file.
= Setup and check simulation problem.
= Call solver(s) to perform analysis.
= Collect output.
= Do some post-processing on the output.

= Dump outputs into a file. Maybe not so
; correctly?
= Exit.

Simple to code, focuses attention (correctly)
on the analysis rather than interfaces.

L

N

arop, 20015
Simulation: Analysis or Design

L/

Focus on algorithms sometimes detracts from
understanding simulator application.
= E.g. focus on large scale simulation ignores 99% of
total CPU cycles spent in circuit simulators!
Developers seldom think of the efficiency of
the simulator as it is applied by the designer!

= In fact, developers are seldom aware of the many
ways in which simulators get applied.
+ Until a problem happens...

The fact is that a simulator is a design tool,
not just an analysis tool.

Impediments

N

L/

Using a traditional simulator to perform
various design tasks presents problems.

Examples: sizing a gate to a specific load, or
modeling the setup/hold time of latches.

Two possible outcomes:

= Simulator gets enhanced with a new algorithm to
solve the specific problem, making it more complex.

= Vast amounts of Perl, Python, Awk, and shell
scripts get written as wrappers around the
simulator to create a "design application” that the
design community can use.

Write

Glue Code...

I Nassif. NACDM workshop, 2004 7

Read

Write

N

There is an Alternative

L/

Unwrap the tool into individual components.
Expose each component to an extension

language (EL).

1 workshop, 2004 8

Use the EL to script the operation of simulator.

Many extension la
Python, Perl, EIk,

s Even meta-EL too

nguages are available: Tcl,
Lua, Guile...
s also exist (SWIG).

Tcl has taken hold

in the design automation

world (one of the first, had a GUI, easy, simple...).

How TcI Works

@ Appllcatlon reglsters commands W|th the mterpreter
| WhICh are treated semantlcally as bunt |ns | |

, comn|1ands

Tcl Interpreter Y

("~ Application)

(Simulator)

Dispatch :
resistor

nodes

\ Built-in Commands | dcanal |

N

Tcl/Simulator Interface Level

L/

Two extremes:

Export the main () routine and use Tcl to
pass command line options.
= No loss in efficiency, No gain in flexibility.

Explode all data structures and algorithms in
the simulator.
= Potential loss in efficiency, much gain in flexibility.
= (can you imagine LU factorization in an EL!)

There is some appropriate middle ground that
defines a level where the efficiency/flexibility
tradeoff is optimal for a given application.

N

A Practical Example: LEADER

A Spice-like circuit simulator, under active
development at IBM for last 4 years.

Traditional .y algorithms, solvers, models...

kshop, 2004 11

= A simplified version, dubbed “the simulation

substra
= Open so

Technique

Completely
= Netlist, co

Simulation Substrate

¢ Written in C++

+ 31578 lines of solver code
via abstract interfaces
(sparsel.3, slap, ...)

+ 4510 lines of simulator
code (simple models only)

t be shared.

simulators!

Netlist as a Program

N

Hierarchy and parameterlzatlon are exactly
isomorphic to traditional ptf e, ameterigation
Drog ramminc—canctensta] | with defaults using

Hierarchy procedure arguments
) N . — B
global L mplemented ------
0 o0c simple na
set L 0.065 | . yhgte

proc inverter

global L

l/

{wp 1.4} } {

nmos Sname.N n -1 SL

pmos $name.P Swp -1 SL
}

vsrc vdd -p vdd
for {set n 0} {$

inverter INV.$n

More on Parameterization

Tcl allows extension language variables and

internal parameters j~=-~—==+=2=tically
. Tcl_LinkVar used
synchronlzed. to link Tcl and C
3 variables... Availability of native

global R file I/O makes tool
vsrc vdd -p vdd -n G -v o.[// interactions easy!
Simple analysis ™ N2 -T R 7
commands Results returned in

native language tk -bg white” w]
£0u \{set g data structures set R [expr $R*1.1]} {
dcsolve/éﬁ////

nodes X
puts $pg [format “%6.2f %6.2f” SR $X(N _a)]

}
Close $pg

Stimulus Parameterization

Circuit stimulus can be defined procedurally as
well! Very difficult to do in current simulators.

= Example: stimulus from files or pipes...

@
proc sinsq input { t } {

set PI2 1.57079632
if {$t < 1} { return 0.0 }
if {$t > 2} { return 1.0 }

Tcl procedure used

if {$t < 2} { return [expr pq to define input /2)] '}
} waveform...
Simple analysis >r { name input output wn 1} {wp 1.4} } {..}
CommandS vdd -n G -v 0.9
vip -n G -proc sinsq_ input

verter X1 vip N b vdd
tranal -step 0.01 -stop 3.0

Dynamic Model Support

Models can be defined via EL

I L Tcl procedure used
= Automatic differentiation and pre to define the non-

Built in extension £ cost of il’\terprety,ﬂ linearity...

does pre-parsing _
and differentiation | resistor { a b r0 rl r2 } {

set va [get voltage $a]; set vb [get voltage $b];
gcalc {

indep va vb;

$i = $r0 + $rl* (Sva-$Svb) + $r2* ($va-$vb)*2;

h]
Generic 2-terminal
elements with
parameters

list $i [deriv i va] [deriv i vb]]

two term -# $A $B —-proc nonlinear resistor -pars {0 0.1 0.2} %

Algorithm Control

4 Having Sin| simple commands

algorithmg can hide complex jaggqrily

adaptive behavior

shavior for core

imply that

flexibility iyy A

proc dcsolve] {stratec

switch $strategy {

And shield the user
from the internal
options & details

“‘default”

“robust”

“SillY" {

if {[dcsolve -m NEWTON -b 1]} {

_dcsolve -m HOMOTOPY

Some algorithms can
even be implemented
at the EL level!

for {set g le-3} {$g > le-12} {set g [expr $g*0.1]1} {
option gmin $g; dcsolve -m NEWTON

Alternative Forms of Netlists

imulator to a
Igm (e.g. brain simulation?).
s can look like ODEs.

@ EL aIIOWS Procedures can map
completel

s Because

@ /£
proc neuron { A B C output {alpha 1.4} } {

csrc -# Soutput G -expr “max(V(A),V(B),V(C),alpha)”
cap -# Soutput G le-10

“other” concepts onto
circuit forms

}

proc stimulus { A | Sgme can be done
isrc -# $A G -p for simulation -6 le-3 3e-6 0}
} commands

proc simulate { interval } {

tranal [expr $interval/1000] $interval

And Finally, GUI Appeal

N

Interface to a power grid simulator...

m (really just a special purpose circuit simulator!)

File Action Show/Hide

X[o ¥[o BUTTONS| |

Technology | Contacts | 2D-plot | 3D-plot | EM-plot | Options | Help |

File Action Showi/Hide

Technology | Contacts | 2D-plot |

X| 3 ¥| 280 BUTTONS| 200M |RULER | FILL

3D-plot | EM-plot | Options | Help |

=

18

Special purpose
. widgets added to Tcl

Region Data

Width 1715 Height
Power Data
Fower (W) 0.238 Vdd (V) 1.2

Power Contacts

vdd |0 03 £0 17153

gndl{‘\?‘\ﬁ 03 {1715 171593

Technology | Contacts | 2D-plot | 3D-plot | EM-plot | Options | Help |

Layer Data | | |
HAME | RHO | WIDTH | PITCH | EM Limit | ViaRes | COLOR
ohm/square grid units grid units ma ohms

M1 Sfo.0s B |30 Jo.7 Jo.
Mz Ifo. nas |2 I Jo.? Jo.1 S T
M3 Fo.04s 2 |38 i Jo.1
ot mfeess [30 [i [a.7 -
] =i0.045 2 B 1 0.1

=] I I | | T i
MK Iffo.0ss B [30 1 [0
Ma 1=| [I3 [a3 gl RLSIL I
- ﬂ”U-UZ [= File Action Show/Hide %[128 ¥[1333 BUTTONS| zcom |RULER | FILL

N] s | oo || v |)
x|

|| Ale Action Show/Hide

Technology | Contacts

Bl I
EHE]
—

for domain-specific
2 visualization!

£ Fal
AV
& by
AV TAY
7
AT TSI

Phi

Distance

N

Low Hanging Fruit...

An EL-enabled simulator is, by definition,
interactive.

Thoughtful implementation of internal

representation can also make it incremental.

Obvious example: integrate simulator with

schematic entry!
= Far more productive than current batch-style

interfaces that exist in commercial design
environments.

op, 2004 19

arop, 2001 20
From Analysis to Design

N

L/

Circuit design often requires meta-analysis and
optimization.

Meta-analysis: the composition of multiple
simulation results to resolve a design
performance question.

= Example: determination of latch setup/hold times
(one of the core tasks of “library characterization”).

Optimization: the methodical modification of
parameters to meet performance targets.
s Example: sizing a keeper to reduce noise.

N

tvorsion 208 21
Example: Latch Characterization

L/

Latch: state holding element, core of
sequential (clocked) digital systems.

Data | Outpyt A Clock
Latch Data l‘_;;p%////%
Clock i) PRt / Time,

+ Data gets copied to output when clock transitions.

¢ BUT... Data must be stable T before clock arrives!

setup

Latch Behavior vs. TSetup

D EE e ommome —

2l B
CEERE)
M E
R i

mqqmq_h_q

d prifan

—th.nuvf

i Hfie

LT

N
\V

0.8

0.4

0.2

0.5

kshop, 2004 23

Meta-Analysis Example

N

L/

Circuit, performance,
and simulation scripts
can be encapsulated.

Simulation
Setup

Performance
Definition

Latch Circuit
Definition

Similar algorithms can
be abstracted.

Zero Finding

\ 4

Binary Search

Golden Section

Meta-Analysis Using an EL

N

Power of a complete interactive prototyping
environment makes creating meta-analyses
very easy.

A modest amount of discipline results in meta-
analysis code that is re-usable.

Availability of object oriented extensions to Tcl
(incrTcl) helps add the discipline needed when
“wrapping” meta-analyses.

= Classes also allow for better data hiding when
needed.

N

More Complex Analysis

L/

Once circuit & performance are parameterized,
complex interactions can be handled via
standard packages.

A few key “objects” serve to mediate.
= Implemented as Tcl extensions.

Parameter: name, value, range, distribution...

Performance: name, transform...

Example: Sampling

~ Create parameters
S and MonteCarlo

param P { R1 3 2 4 } { sample
set NS 100

sample S$NS P DATA

Create a simple

vsre vdd -p vdd -n G -v 1.0 _— parameterized circuit
res Rl -p vdd -n A -r @R1

res R2 -p A -n G -r @R2

for {set i 0} {$i < $NS} {incr il pring simulation loop
set R1 $DATA($i,0) use samples to re-
set R2 $DATA($i,1) parameterize circuit

dcsolve

nodes X
puts [format “R1l=%.3g R2=%.3g V(A)=%.3g” S$SR1 $R2 $X(A)]

op, 2004 27

And Finally, Optimization

N

Numerous optimization packages available.

Most expect the objective function to be
specified as a callable object.

EL can mediate...

= Implement standardized objective function in any
language compatible with the optimizer.

= Have the standardized objective function call the
name of a Tcl procedure.

= Return the result of the Tcl procedure.

Reality Check... often optimization is not what we want and “improvement”
suffices. The presence of process variability and various forms of model
inaccuracy mean that improvement is often more realistically achievable!

/]
\J

:

) 3 DM workshop, 2004 28

I

L Interface to Optimizer

Tcl Wra pper

for Optimizer

: Optimizer

Parameter

- Problem Definition
Definitions

Optimizatim\
Algorithm /

Objective Function

Example: Optimization
Create parameters

5 that will be

Param P { R1 32 4 } { R2 7 55.:5ﬁ optimized
vsrc vdd -p vdd -n G -v 1.0 Create a simple

res Rl -p vdd -n A -r @R1 parameterized circuit
res R2 -p A -n G -r @R2

Create procedure to
proc func { X } { simulate and return
global R1 R2 objective function

set Rl $X(0); set R2 $X(1)

dcanal

nodes Y
return [expr pow($Y(A)-0.5,2)]
} Call optimizer and

o printresu
sqp P func

puts [format “optimum at R1=%.3f R2=%.3f” S$SP(R1l) S$P(R2)]

N

Conclusions

L/

We need to move simulators beyond analysis
to become “design” tools.

Traditional simulator architectures make this
difficult and inefficient in developer time.

The use of extension languages and careful
thought to the level of the EL/simulator
interface can improve simulator flexibility.

The integration of sampling, optimization, and
other analysis algorithms into the mix will
result in an efficient problem solving platform
for design applications.

Questions?

N
\J

kshop, 2004

31

