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Objective and Approach

OBJECTIVE

m [0 judge the quality of the reduced model of a dynamical system by
estimating its error and region of validity.

APPROACH

m The overall approach is general. Here we concentrate on Proper Orthogonal
Decomposition (POD).

m Estimates and bounds of the reduced model errors are obtained using a
combination of small sample statistical condition estimation and error
estimation using the adjoint method.

m This approach allows the assessment of regions of validity, i.e., ranges of
perturbations in the original system over which the reduced model is still
appropriate.



POD for Dynamical Systems

m The PROPER ORTHOGONAL DECOMPOSITION (POD) reduction is the
most efficient choice among linear decompositions in the sense that it retains,
on average, the greatest possible kinetic energy.

m |t provides the best approximating affine subspace to a given set of time
snapshots of the solution, collected into an observation matrix

Y =[Y(t1)—)7,---,)’(tm)_37]

where y Is the mean of these observations.

m POD seeks a subspace S and the corresponding projection matrix P, so that
the total square distance ||Y — PY|| is minimized.



POD for Dynamical Systems
(continued)

m Using the singular value decomposition (SVD) of the observation matrix, the
projection matrix corresponding to the optimal POD subspace S Is obtained
as P = pp"T € R™", where p is the matrix of projection onto S, the subspace
spanned by the reduced basis obtained from the SVD.

m  The matrix p € R™k consists of the columns V, (i=1,...,k), the singular vectors
corresponding to the k largest singular values.

m The error of the projection is given by

minly ~PY[ = 32

j=k+1



POD for Dynamical Systems
(continued)

m A POD-based reduced model for

d
d—{=f(t,y,p), y(t,) =Y,

can be constructed by projecting onto S the vector field f(s,t) at each point
s e S.
m The reduced model in subspace coordinates is:

dy S N N
gt =p'ft,py°+Y,p), Y (t)=0"(Yo-Y)

m The reduced model in full space coordinates is:

~

dy

5 =PrEy.p), Y(t)=P(y,-Y)+y




Error of the POD Approximation

Let y(t) be the solution of the POD-reduced model, and y (t) the
projection onto S of the solution y (t) of the original problem.

The total approximation error can be split into

m Subspace approximation error e, (t)=yt)-y(t)

m integration error in the subspace S et)=y@t)-y(t)




Small Sample Statistical Method
for Condition Estimation (SCE)

m For any vector veR", if z is selected uniformly and randomly from the unit

sphere S, ,, the expected value is E([z"v|)=W, |v|

m \We estimate the norm ||v|| using the expression

‘ZTV‘ 2 .
E= W where W, = ”(n _1/2) are the Wallis factors.

n

= For additional random vectors z,,...,z,, the estimate

\/‘zv‘ ‘zv‘+ +‘zv‘

éf_

n

satisfies

(vl i
Prl™— <& <ypv||~1-
\ 7 J

(v i
Prl = <& <ylv| |~ 1-
\ 7 J



SCE for Estimation of Errors Due to
Model Reduction

= For the norm [|e(ty|| of the error vector, the quantities z'e(t)

(for some random vector z; selected uniformly from S, ;) are computed using
an adjoint model.

m  While for one given ODE system the forward model is most efficient for
estimating the norm of the error, the combination of the adjoint approach and
the SCE can be used to estimate the region of validity of a reduced model,
using the concept of “condition number” for the error equation corresponding
to each perturbation.

m Although these estimates provide only approximate upper bounds for the
norms of the errors, they have the advantage of allowing a-priori estimates of
the errors induced by perturbations.



Estimation ofi the Total
Approximation Error

m To first order approximation, the total error satisfies
de

1 =I00e-QIID. elte)=-Qly,-Y)

where J is the Jacobian of f, and Q =1 - P. Using

Ze(t,) =~ | £ ($)Qf (¥ (5),8)ds — & (to)Q(y, —¥)

where z is a random vector uniformly selected from the unit sphere S, ; and A

IS the solution of the adjoint system

(;_?z‘f(y,t)ﬂ, At) =2

we obtain the SCE for the norm of the total error

W q
t.)~ —2
ety Jz

2

JZ ($)Qf ((5),5)ds + 4 (t.)QYo -Y)

to




Estimation of the Subspace
Integration Error

In the S coordinate system, where e = p'e, and e, = p e>, the subspace
Integration error satisfies to first order

de’ - .
d—tlszJ(y’t)peiS-l_‘](ylt)eJ_’ eis(to)zo

For a random vector z° uniformly selected from the unit sphere S, ;

(2°Y ed(t,) = [ ] (s)p" (¥ (5).5)e, (s)ds

du, A
. =—p' 3 (Y. Dpu,, ut)=2

S

where Hy solves the adjoint system

The SCE estimate for the norm of the subspace integration error is

2

[14(5)p"3(3 (), 9)e. (s)ds

to

W q
(t,)] = 2
He|( f)H Wn \/le




Condition Number for the
Subspace Integration Error

» For a unit vector zS we define 8'(s)=J3" (Y (s),s)pu,(s)

ts

_n;\aii (s)ds

t, !

and ,(0)=]0

L=
m \We have Hei(tf)HSK(ei).HelHLw

W
W

n

> k;(e) is the “condition number”
j=1

q
where x(€;) =
=

for the subspace integration error
m For the norm of the projection error e, we have

.l.. <le.l,, = 2.4 =ErPOD



Estimation of Regions of Validity

Consider perturbations to initial conditions. Other perturbations are treated
similarly.

Let Y be the solution of the ODE obtained by applying an IC perturbation
and Y the solution of the corresponding POD-reduced model, with P based

ony. Defining E, =Y —Y and A(t) = E,(t) —e(t),

we have [[e(t )] —[A(t)]|<[Eatt)]|< et )]+ At

The error A is split into A, (orthogonal to S) and A, (parallel to S).
An SCE estimate of the norm of A (t;) is given by

=1

W g W g
= S8 = S <x(w)y,

- dA, .
where A4, satisfies dty=—JT(y,t),1yA, A, (t,)=Qz!



Estimation of Regions of Validity
(continued)

m The “condition number” x(A,) Is defined as

W q
¢ BR), K004,

K(Al) —

m To first order, A(t) = 0, i.e., a perturbation to the initial conditions of the

original ODE does not introduce additional subspace integration errors. Thus

et =[a. | < [Eut )] < et )]+ x(a,)- oy



Numerical Results

m The estimates (and bounds), obtained with g=1,2,3, where g Is the number of
orthogonal vectors used by the SCE, are shown as follows:

= Total approximation error: [e(t, )| =y (t;) -y (t;)|

= Error bound for HE;C (t, )H , as predicted by the condition number & (A¢)

m Examples: linear advection-diffusion and pollution model



Linear Advection-Diffusion Model

ut — pluxx + pzux
BC. u(0,t)=u(2,t)=0.0
1.C. u(x,0)=u,(x)=x(2-x)e*

m  With yi(t) = u(x,t), central differencing, and eliminating boundary values, we
obtain n ODEs

%: yi+1_2yi T VYia 4

Yia—Yia
s . . O = U-( X.

m The problem parameters were p,=0.5, p,=1.0, and n=100

m The POD projection matrices were based on 100 data points equally spaced
in the interval [t,, t] = [0.0, 0.3].



Advection-Diffusion Model
Approximation Errors

Total Error Approximation error E, as a function
of the IC perturbation k=5
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The solid (black) lines represent the corresponding norms computed by the forward integration of the error equations.
The dotted (colored) lines describe SCE estimates.

The dashed (colored) lines represent the bounds of the errors.

The (blue) line made of circles represents the norm of the “exact error,” e(t,) = y (t,) -y (t,)



Pollution Model

m  This is a highly stiff ODE system consisting of 25 reactions and 20 chemical
species

dy _ _
E_f(yip)’ y(o)_yo

m The POD projection matrix was based on 1000 data points equally spaced in
the interval [t,, t] = [0.0, 1.0].



Pollution Model
Approximation Errors

Total Error Approximation error E, as a function
of the IC perturbation k=5
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The solid (black) lines represent the corresponding norms computed by the forward integration of the error equations.
The dotted (colored) lines describe SCE estimates.

The dashed (colored) lines represent the bounds of the errors.

The (blue) line made of circles represents the norm of the “exact error,” e(t,) = y (t,) -y (t,)




Discussion

ERROR BOUNDS

m do not rely on the solution of the perturbed system and therefore provide
a-priori assessments of validity.

m are based on the continuous error equation and therefore independent of
the integration method.

m can be obtained via similar procedure for perturbations in right hand side,
rather than in initial conditions

m can be extended to projections other than POD.
= good results for reduced order models of chemical kinetics



	Error Estimation for Reduced Order Models of Dynamical Systems
	Objective and Approach
	POD for Dynamical Systems
	POD for Dynamical Systems (continued)
	POD for Dynamical Systems (continued)
	Error of the POD Approximation
	Small Sample Statistical Method for Condition Estimation (SCE)
	SCE for Estimation of Errors Due to Model Reduction
	Estimation of the Total Approximation Error
	Estimation of the Subspace Integration Error
	Condition Number for the Subspace Integration Error
	 Estimation of Regions of Validity
	Estimation of Regions of Validity (continued)
	Numerical Results
	Linear Advection-Diffusion Model
	Advection-Diffusion Model Approximation Errors
	Pollution Model
	Pollution Model Approximation Errors
	Discussion

