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DIRECT Global Search Algorithm
DIviding-RECTangles in action
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DIRECT Global Search Algorithm
Algorithm description

Given an objective function f and the design space D = D0:
Step 1. Normalize the design space D to be the unit hypercube. Sample the

center point ci of this hypercube and evaluate f(ci). Initialize fmin = f(ci),
evaluation counter m = 1, and iteration counter t = 0.

Step 2. Identify the set S of potentially optimal boxes.
Step 3. Select any box j ∈ S.
Step 4. Divide the box j as follows:

(1) Identify the set I of dimensions with the maximum side length. Let δ equal
one-third of this maximum side length.

(2) Sample the function at the points c± δei for all i ∈ I, where c is the center of
the box and ei is the ith unit vector.

(3) Divide the box j containing c into thirds along the dimensions in I, starting
with the dimension with the lowest value of wi = min{f(c+ δei), f(c − δei)},
and continuing to the dimension with the highest w i. Update fmin and m.

Step 5. Set S = S − {j}. If S �= ∅ go to Step 3.
Step 6. Set t = t + 1. If iteration limit or evaluation limit has been reached, stop.

Otherwise, go to Step 2.
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DIRECT Global Search Algorithm
Global convergence property
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• Box selection rule: box j is potentially optimal if

f(cj)− K̃dj ≤ f(ci)− K̃di,

f(cj)− K̃dj ≤ fmin − ε|fmin|,

for some K̃ > 0 and i = 1, . . . ,m (the total number of subdivided boxes)

• Lipschitz continuity is required in the domain.
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Parallel Scheme and Implementation
Design challenges

2. Single-start to multi-start
3. Dynamic load balancing
4. Dynamic process role change

1. Dynamic data structures

A 3-functional level dynamic parallel scheme:

Function Evaluation

Functional ComponentLevel

Domain Decomposition

Box Subdivision

Level 1

Level 2

Level 3

1. Unpredictable storage requirement
2. A single starting point
3. Unpredictable workload
4. Strong data dependency
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Parallel Scheme and Implementation
Dynamic data structures

From 1-D data structures to a 2-D data structure.

A box sequence
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Parallel Scheme and Implementation
Dynamic data structures—box structures
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• Two-dimensional dynamic structure

• Priority queue vs. sorted list
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Parallel Scheme and Implementation
Dynamic data structures—Linked list structures
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• Maintain 2-D structure

• Recycle box sequence columns
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Parallel Scheme and Implementation
Performance studies

• Objective function convergence tolerance τ
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Parallel Scheme and Implementation
A dynamic parallel scheme

is done in its subdomain.

Worker Pool

ROOT
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1. Masters decompose the domain, control global
termination, and merge the results to the root master.

2. Masters share a worker pool, where each worker
sends requests to randomly selected masters.

3. A randomly selected worker becomes a new 
master to share the box subdivision tasks with
the memory overloaded master. 

4. A master becomes a worker when the search
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Applications
Cell cycle modeling—the wiring diagram for frog eggs

(dephosphorylation by Cdc25)
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Applications
Cell cycle modeling—the ODE system

Apply mass-action kinetics and Michaelis-Menten rate laws to the wiring diagram.

dM

dt
=
(
v′d(1−D) + v′′dD

)
(CT −M)

−
(
v′w(1−W ) + v′′wW

)
M, (1)

dD

dt
= vd

(
M(1 −D)

Kmd + (1−D)
− ρdD

Kmdr +D

)
, (2)

dW

dt
= vw

(
− MW

Kmw +W
+

ρw(1 −W )

Kmwr + (1−W )

)
, (3)

where
M = [MPF]/[total Cdk1],
D = [Cdc25P]/[total Cdc25],
W = [Wee1]/[total Wee1],
CT = [total cyclin]/[total Cdk1].

M , D, W , and CT represent scaled concentrations of active MPF, active Cdc25,
active Wee1, and total cyclin in the extract, respectively. The parameters v ′

d, v′′d ,
v′w, v′′w, vd, Kmd, ρd, Kmdr, vw, Kmw, ρw, and Kmwr are also scaled, making the
system dimensionless.
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Applications
Cell cycle modeling—the objective function
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,

subject to the constraints

εi = fi(xi + δi;β)− yi, i = 1, . . . , n.

14 Virginia Tech

Applications
Resulting goodness-of-fit for frog eggs
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Applications
Parallel efficiency for frog eggs

The parallel efficiency E is defined as

E =
Sr

p/base
,

where Sr = Timebase/Timep is the relative speedup.

Frog Egg Model
I 3 6 E(6) 15 E(15)

10 1432 1152 0.62 372 0.77
20 3939 2267 0.87 1045 0.75
40 8657 4936 0.88 1960 0.88

16 Virginia Tech



Application in Aircraft Design: HSCT (high speed civil transport
Problem scenario

Optimization objective: minimize takeoff gross weight (TOGW) for a range
of 5500 nautical miles and a cruise Mach number of 2.4, while carrying 251
passengers.

Typical high speed civil transport (HSCT) configuration.
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Application in Aircraft Design: HSCT
Optimization design variables and constraints

1. 28 design variables:
• Geometry of the aircraft: 24 variables in 6 categories

wing planform,
airfoil shape,
tail areas,
nacelle placement,
and fuselage shape.

• Idealized cruise mission: 4 variables
mission fuel,
engine thrust,
initial cruise altitude,
and constant climb rate.

2. 68 constraints in 3 categories:
• Geometry
• Performance
• Aerodynamic
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Application in Aircraft Design: HSCT
Parallel efficiency comparison
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Application in Wireless Design: S4W
Problem scenario

1. Transmitter placement optimization: ensuring an acceptable level (threshold)
of wireless system performance within a geographical area of interest at a minimum
cost.

Durham Hall 4th floor, Virginia Tech
2. Problem abstraction:

min
x∈D

f0(x),

D = {x ∈ D0 | fj(x) ≤ 0, j = 1, . . . , J},
where D0 =

{
x ∈ En | � ≤ x ≤ u

}
is a simple box constraint set.
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Application in Wireless Design: S4W
Objective formulation

1. Power coverage:

Number of receivers with received power above threshold

Total number of receivers

2. Bit error rate (BER):

Number of incorrectly received bits

Total Number of received bits

3. Observation: Discrete vs. continuous.

4. Reformulation:
• Decision variables for n transmitters over m receivers:

X = (x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn),

where zi = z0.
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Application in Wireless Design: S4W
Objective formulation (cont.)

• Objective function
Average shortfall of the estimated performance metric from the given threshold T:

f(X) =


1

m

m∑
i=1

(T − pki)+, coverage,

1

m

m∑
i=1

(pki − T )+, BER.

pki: performance metric of transmitter (k,i) evaluated at the ith receiver location,
where transmitter (k, i), located at (xk, yk, z0), 1 ≤ k ≤ n, generates the
highest power level Pki(xk, yk, z0) ≥ Pji(xj, yj , z0), 1 ≤ j ≤ n, at the receiver
location i, 1 ≤ i ≤ m.
Power coverage optimization:

pki = Pki(xk, yk, z0), (T − pki)+ is the penalty for a low power level.

BER optimization:

pki = log10 (BERki), (pki − T )+ is the penalty for a high bit error rate.
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Application in Wireless Design: S4W
Optimization results
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Power coverage optimization results for three transmitters. The starting (optimal)
locations are marked with circles (crosses).
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Application in Wireless Design: S4W
Optimization results

y, m

x, m
806040200

10

20

30

f

0.06

0.08

0.04

0.1

0.02

0 10 20 30 40 50 iteration

BER optimization results for two transmitters. The starting (optimal) locations are
marked with circles (crosses).

24 Virginia Tech



References

• N. A. Allen, C. A. Shaffer, M. T. Vass, N. Ramakrishnan, and L. T. Watson,
“Improving the development process for eukaryotic cell cycle models with a
modeling support environment”, Simulation, vol. 79, pp. 674–688, 2003.

• J. M. Gablonsky and C. T. Kelley, “A locally-biased form of the DIRECT
algorithm”, Journal of Global Optimization, vol. 21, pp. 27–37. 2001.

• J. He, M. Sosonkina, C. A. Shaffer, J. J. Tyson, L. T. Watson, J. W. Zwolak,
"A hierarchical parallel scheme for global parameter estimation in systems
biology", in Proceedings of IPDPS (International Parallel and Distributed
Processing Symposium) CD-ROM, Santa Fe, New Mexico, April, 2004.

• J. He, A. Verstak, L. T. Watson, C. A. Stinson, N. Ramakrishnan, C. A. Shaffer,
T. S. Rappaport, C. R. Anderson, K. Bae, J. Jiang, and W. H. Tranter, "Globally
optimal transmitter placement for indoor wireless communication systems", to
appear in IEEE Transactions on Wireless Communications, 2004.

• J. He, L. T. Watson, N. Ramakrishnan, C. A. Shaffer, A. Verstak, J. Jiang,
K. Bae, and W. H. Tranter, “Dynamic data structures for a direct search
algorithm”, Computational Optimization and Applications, vol. 23, pp. 5–25,
2002.

25 Virginia Tech

• D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization
without the Lipschitz constant”, Journal of Optimization Theory and Application,
vol. 79, no. 1, pp. 157–181, 1993

• L. T. Watson and C. A. Baker, “A fully-distributed parallel global search
algorithm”, Engineering Computations, vol. 18, no. 1/2, pp. 155–169, 2001.

• J. W. Zwolak, J. J. Tyson, and L. T. Watson, “Parameter estimation in a
cell cycle model for frog egg extracts”, in Proceedings of High Performance
Computing Symposium, A. Tentner (ed.), Soc. for Modeling and Simulation
Internat., San Diego, CA, pp. 67–74, 2002.

• http://www.cs.vt.edu/˜ltw/VTdirect.ar.gz

26 Virginia Tech


