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DIRECT Global Search Algorithm
Dlviding-RECTangles in action
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DIRECT Global Search Algorithm

Algorithm description

Given an objective function f and the design space D = Dy:

Step 1. Normalize the design space D to be the unit hypercube. Sample the
center point ¢; of this hypercube and evaluate f(c;). Initialize fumin = f(c;),
evaluation counter m = 1, and iteration counter ¢t = 0.

Step 2. Identify the set S of potentially optimal boxes.

Step 3. Selectany box j € S.

Step 4. Divide the box j as follows:

(1) Identify the set I of dimensions with the maximum side length. Let § equal
one-third of this maximum side length.
(2) Sample the function at the points ¢ + ée; for all i € I, where c is the center of
the box and e¢; is the ith unit vector.
(3) Divide the box j containing c into thirds along the dimensions in I, starting
with the dimension with the lowest value of w; = min{f(c + &e;), f(c — be;)},
and continuing to the dimension with the highest w;. Update fu.;, and m.
Step 5. Set S =5 — {j}. If S # 0 go to Step 3.
Step 6. Sett = ¢ + 1. If iteration limit or evaluation limit has been reached, stop.
Otherwise, go to Step 2.
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DIRECT Global Search Algorithm

Global convergence property

Box Center Function Values

Box Diameters

@ represents a potentially optimal box

e Box selection rule: box j is potentially optimal if
fle;) = Kd; < f(e:) — Kd,

f(cj) - f(d] S fmin - 6‘fmin|7

forsome K > 0 and i = 1,...,m (the total number of subdivided boxes)

e Lipschitz continuity is required in the domain.

Parallel Scheme and Implementation
Dynamic data structures

From 1-D data structures to a 2-D data structure.

Box Diametersincreasing
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Parallel Scheme and Implementation
Design challenges

Functional Component

1. Unpredictable storage requirement
2. A single starting point

3. Unpredictable workload

4. Strong data dependency

Domain Decomposition

'

A 3-functional level dynamic parallel scheme:

1. Dynamic data structures

2. Single-start to multi-start
3. Dynamic load balancing
4. Dynamic process role change
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Parallel Scheme and Implementation
Dynamic data structures—box structures

sibling

1
BoxLink

m

e Two-dimensional dynamic structure
e Priority queue vs. sorted list
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Parallel Scheme and Implementation
Dynamic data structures—Linked list structures

setDia ZEMII m

insertion| position

Decreasing box sizes

,,,,, M
setFcol ZIIII IIIZ
stack top
e Maintain 2-D structure
e Recycle box sequence columns
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Parallel Scheme and Implementation
A dynamic parallel scheme

1. Masters decompose the domain, control global

2. Masters share a worker pool, where each worker
sends requests to randomly selected masters.

3. Arandomly selected worker becomes a new
master to share the box subdivision tasks with
the memory overloaded master.

4. A master becomes a worker when the search
is done in its subdomain.

Worker Pool
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termination, and merge the results to the root master.

Parallel Scheme and Implementation
Performance studies

e Objective function convergence tolerance 7
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Applications

Cell cycle modeling—the wiring diagram for frog eggs

88 I 1. CycB synthesis
‘2\ / - W‘.*’l Fo S \ s 2. CycB degradation (APC)
4 00 K
P dkl dk1 IoYe) : 3. CycB + Cdk1
14. MPF inactivation
Cdezs = 1 (phosphorylation by Weel)
Cdkl !

.

;5. MPF reactivation

.

3 .
— = substrate reactions _~~ (dephosphorylation by Cdc25)

....... = catalytic actions 1 2 ofe}
— () — &8
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Applications
Cell cycle modeling—the ODE system

Apply mass-action kinetics and Michaelis-Menten rate laws to the wiring diagram.

dM
— = (a1 = D) +viD)(Cr - M)
(v, (1= W) +v”W)M
g M B pdD
Kmd + ) Kmdr + D
pw(l — W)
mw+W mer+(1_W) ’

= Uy

where

M = [MPF]/total Cdk1],

D [Cdc25P)/[total Cdc25],
W = [Weel]/[total Weel],

Cr [total cyclin]/[total CdKk1].

M, D, W, and Cr represent scaled concentrations of active MPF, active Cdc25,
active Weel, and total cyclin in the extract, respectively. The parameters v/, v/,

vl U vay Kds pdy Kmdry Vwy Kmw, pw, @nd K, are also scaled, making the
system dimensionless.

Time Lag (min)

generated by the optimal parameters

Marlovits et al. (left) and Moore (right).

generated by the parameters known in literature:
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Resulting goodness-of-fit for frog eggs
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Applications

Cell cycle modeling—the objective function
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Applications

Parallel efficiency for frog eggs

The parallel efficiency FE is defined as

_ ST
" p/base’

where S, = Timey,qs./Time, is the relative speedup.

Frog Egg Model
I 3 6 E(6) 15 E(15)
10 1432 1152 0.62 372 0.77
20 3939 2267 0.87 1045 0.75
40 8657 4936 0.88 1960 0.88
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Application in Aircraft Design: HSCT (high speed civil transport

Problem scenario

Optimization objective: minimize takeoff gross weight (TOGW) for a range
of 5500 nautical miles and a cruise Mach number of 2.4, while carrying 251

passengers.
Typical high speed civil transport (HSCT) configuration.
17 Virginia Tech
Application in Aircraft Design: HSCT
Parallel efficiency comparison
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Application in Aircraft Design: HSCT

Optimization design variables and constraints

. 28 design variables:

Geometry of the aircraft: 24 variables in 6 categories
wing planform,

airfoil shape,

tail areas,

nacelle placement,

and fuselage shape.

Idealized cruise mission: 4 variables
mission fuel,

engine thrust,

initial cruise altitude,

and constant climb rate.

. 68 constraints in 3 categories:

Geometry
Performance
Aerodynamic

Application in Wireless Design: s*w

Problem scenario

1. Transmitter placement optimization: ensuring an acceptable level (threshold)
of wireless system performance within a geographical area of interest at a minimum

cost.

JEIs

1
-

Durham Hall 4th floor, Virginia Tech
2. Problem abstraction:

min fo(z),

D:{SCGDo‘fJ(‘T)SO,]:l,,J},

where Dy = {z € E" | { < z < u} is a simple box constraint set.
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Application in Wireless Design: s*w

Objective formulation

1. Power coverage:

Number of receivers with received power above threshold

Total number of receivers

2. Bit error rate (BER):

Number of incorrectly received bits

Total Number of received bits

3. Observation: Discrete vs. continuous.

4. Reformulation:
e Decision variables for n transmitters over m receivers:

X = (3317311,2171327312,22, . 7mn7ynazn)7

where z; = 2.
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Application in Wireless Design: s*w

Optimization results
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Power coverage optimization results for three transmitters. The starting (optimal)
locations are marked with circles (crosses).
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Application in Wireless Design: s*w

Objective formulation (cont.)

e Objective function

Average shortfall of the estimated performance metric from the given threshold T:

fF(X) =

1

m

i=1
m

— > (T = pri)4, coverage,

1
— (b~ T)4, BER.
m

i=1

pr;i. performance metric of transmitter (k,7) evaluated at the ith receiver location,
where transmitter (k,4), located at (xx,yr,20), 1 < k < n, generates the
highest power level Py;(xk, yx, 20) > Pji(2j,vj,20), 1 < j < n, at the receiver

locationi, 1 <7 <m.

Power coverage optimization:

Pri = Pri(Tk, Yk, 20), (T — pri)+ is the penalty for a low power level.

BER optimization:

pri = logo (BERk:), (pki — T')+ is the penalty for a high bit error rate.

22

Application in Wireless Design: s*w

Optimization results
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BER optimization results for two transmitters. The starting (optimal) locations are

marked with circles (crosses).
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